190 research outputs found
Cellular Procoagulant Activity Dictates Clot Structure and Stability as a Function of Distance From the Cell Surface
Thrombin concentration modulates fibrin structure and fibrin structure modulates clot stability; however, the impact of localized, cell surface-driven in situ thrombin generation on fibrin structure and stability has not previously been evaluated
Interaction of methyl viologen-induced chloroplast and mitochondrial signalling in Arabidopsis
Reactive oxygen species (ROS) are key signalling intermediates in plant
metabolism, defence, and stress adaptation. In plants, both the
chloroplast and mitochondria are centres of metabolic control and ROS
production, which coordinate stress responses in other cell
compartments. The herbicide and experimental tool, methyl viologen (MV)
induces ROS generation in the chloroplast under illumination, but is
also toxic in non-photosynthetic organisms. We used MV to probe plant
ROS signalling in compartments other than the chloroplast. Taking a
genetic approach in the model plant Arabidopsis (Arabidopsis thaliana),
we used natural variation, QTL mapping, and mutant studies with MV in
the light, but also under dark conditions, when the chloroplast electron
transport is inactive. These studies revealed a light-independent
MV-induced ROS-signalling pathway, suggesting mitochondrial involvement.
Mitochondrial Mn SUPEROXIDE DISMUTASE was required for ROS-tolerance
and the effect of MV was enhanced by exogenous sugar, providing further
evidence for the role of mitochondria. Mutant and hormone feeding assays
revealed roles for stress hormones in organellar ROS-responses. The
radical-induced cell death1 mutant, which is tolerant to MV-induced ROS
and exhibits altered mitochondrial signalling, was used to probe
interactions between organelles. Our studies suggest that mitochondria
are involved in the response to ROS induced by MV in plants.</p
Two Homologous Putative Protein Tyrosine Phosphatases, OsPFA-DSP2 and AtPFA-DSP4, Negatively Regulate the Pathogen Response in Transgenic Plants
Protein phosphatases, together with protein kinases, regulate protein phosphorylation and dephosphorylation, and play critical roles in plant growth and biotic stress responses. However, little is known about the biological functions of plant protein tyrosine dual-specificity phosphatase (PFA-DSP) in biotic stresses. Here, we found that OsPFA-DSP2 was mainly expressed in calli, seedlings, roots, and young panicles, and localized in cytoplasm and nucleus. Ectopic overexpression of OsPFA-DSP2 in rice increased sensitivity to Magnaporthe grisea (M. grisea Z1 strain), inhibited the accumulation of hydrogen peroxide (H2O2) and suppressed the expression of pathogenesis-related (PR) genes after fungal infection. Interestingly, transgenic Arabidopsis plants overexpressing AtPFA-DSP4, which is homologous to OsPFA-DSP2, also exhibited sensitivity to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), reduced accumulation of H2O2 and decreased photosynthesic capacity after infection compared with Col-0. These results indicate that OsPFA-DSP2 and AtPFA-DSP4 act as negative regulators of the pathogen response in transgenic plants
Transcriptome Analysis of H2O2-Treated Wheat Seedlings Reveals a H2O2-Responsive Fatty Acid Desaturase Gene Participating in Powdery Mildew Resistance
Hydrogen peroxide (H2O2) plays important roles in plant biotic and abiotic stress responses. However, the effect of H2O2 stress on the bread wheat transcriptome is still lacking. To investigate the cellular and metabolic responses triggered by H2O2, we performed an mRNA tag analysis of wheat seedlings under 10 mM H2O2 treatment for 6 hour in one powdery mildew (PM) resistant (PmA) and two susceptible (Cha and Han) lines. In total, 6,156, 6,875 and 3,276 transcripts were found to be differentially expressed in PmA, Han and Cha respectively. Among them, 260 genes exhibited consistent expression patterns in all three wheat lines and may represent a subset of basal H2O2 responsive genes that were associated with cell defense, signal transduction, photosynthesis, carbohydrate metabolism, lipid metabolism, redox homeostasis, and transport. Among genes specific to PmA, ‘transport’ activity was significantly enriched in Gene Ontology analysis. MapMan classification showed that, while both up- and down- regulations were observed for auxin, abscisic acid, and brassinolides signaling genes, the jasmonic acid and ethylene signaling pathway genes were all up-regulated, suggesting H2O2-enhanced JA/Et functions in PmA. To further study whether any of these genes were involved in wheat PM response, 19 H2O2-responsive putative defense related genes were assayed in wheat seedlings infected with Blumeria graminis f. sp. tritici (Bgt). Eight of these genes were found to be co-regulated by H2O2 and Bgt, among which a fatty acid desaturase gene TaFAD was then confirmed by virus induced gene silencing (VIGS) to be required for the PM resistance. Together, our data presents the first global picture of the wheat transcriptome under H2O2 stress and uncovers potential links between H2O2 and Bgt responses, hence providing important candidate genes for the PM resistance in wheat
Electrical-thermal analytical modeling of monopolar RF thermal ablation of biological tissues: determining the circumstances under which tissue temperature reaches a steady state
This is a pre-copy-editing, author-produced PDF of an article accepted for publication in MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2015003
AND ENGINEERING following peer review. The definitive publisher-authenticated version Mathematical Biosciences and Engineering (MBE) Pages: 281 - 301, Volume 13, Issue 2, April 2016 is available online at http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=11998[EN] It has been suggested that during RF thermal ablation of biological tissue the thermal lesion could reach an equilibrium size after 1-2 minutes. Our objective was to determine under which circumstances of electrode geometry (needle-like vs. ball-tip), electrode type (dry vs. cooled) and blood perfusion the temperature will reach a steady state at any point in the tissue. We solved the bioheat equation analytically both in cylindrical and spherical coordinates and the resultant limit temperatures were compared. Our results demonstrate mathematically that tissue temperature reaches a steady value in all cases except for cylindrical coordinates without the blood perfusion term, both for dry and cooled electrodes, where temperature increases infinitely. This result is only true when the boundary condition far from the active electrode is considered to be at infinitum. In contrast, when a finite and sufficiently large domain is considered, temperature reaches always a steady state.This work received financial support from the Spanish "Plan Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad" under Grant TEC2014-52383-C3-R (TEC2014-52383-C3-1-R).López Molina, JA.; Rivera Ortun, MJ.; Berjano, E. (2016). Electrical-thermal analytical modeling of monopolar RF thermal ablation of biological tissues: determining the circumstances under which tissue temperature reaches a steady state. Mathematical Biosciences and Engineering. 13(2):281-301. https://doi.org/10.3934/mbe.2015003S28130113
Increased Anion Channel Activity Is an Unavoidable Event in Ozone-Induced Programmed Cell Death
Ozone is a major secondary air pollutant often reaching high concentrations
in urban areas under strong daylight, high temperature and stagnant
high-pressure systems. Ozone in the troposphere is a pollutant that is
harmful to the plant. generation by salicylic and abscisic acids.
Anion channel activation was also shown to promote the accumulation of
transcripts encoding vacuolar processing enzymes, a family of proteases
previously reported to contribute to the disruption of vacuole integrity
observed during programmed cell death.-induced
programmed cell death. Because ion channels and more specifically anion
channels assume a crucial position in cells, an understanding about the
underlying role(s) for ion channels in the signalling pathway leading to
programmed cell death is a subject that warrants future investigation
Genetic mapping of microbial and host traits reveals production of immunomodulatory lipids by Akkermansia muciniphila in the murine gut.
The molecular bases of how host genetic variation impacts the gut microbiome remain largely unknown. Here we used a genetically diverse mouse population and applied systems genetics strategies to identify interactions between host and microbe phenotypes including microbial functions, using faecal metagenomics, small intestinal transcripts and caecal lipids that influence microbe-host dynamics. Quantitative trait locus (QTL) mapping identified murine genomic regions associated with variations in bacterial taxa; bacterial functions including motility, sporulation and lipopolysaccharide production and levels of bacterial- and host-derived lipids. We found overlapping QTL for the abundance of Akkermansia muciniphila and caecal levels of ornithine lipids. Follow-up in vitro and in vivo studies revealed that A. muciniphila is a major source of these lipids in the gut, provided evidence that ornithine lipids have immunomodulatory effects and identified intestinal transcripts co-regulated with these traits including Atf3, which encodes for a transcription factor that plays vital roles in modulating metabolism and immunity. Collectively, these results suggest that ornithine lipids are potentially important for A. muciniphila-host interactions and support the role of host genetics as a determinant of responses to gut microbes
RCD1 and SRO1 are necessary to maintain meristematic fate in Arabidopsis thaliana
The RADICAL-INDUCED CELL DEATH1 and SIMILAR TO RCD ONE1 genes of Arabidopsis thaliana encode members of the poly(ADP-ribose) polymerase (PARP) superfamily and have pleiotropic functions in development and abiotic stress response. In order to begin to understand the developmental and molecular bases of the defects seen in rcd1-3; sro1-1 plants, this study used the root as a model. Double mutant roots are short and display abnormally organized root apical meristems. However, acquisition of most cell fates within the root is not significantly disrupted. The identity of the quiescent centre is compromised, the zone of cell division is smaller than in wild-type roots and abnormal divisions are common, suggesting that RCD1 and SRO1 are necessary to maintain cells in a division-competent state and to regulate division plane placement. In addition, differentiation of several cell types is disrupted in rcd1-3; sro1-1 roots and shoots, demonstrating that RCD1 and SRO1 are also necessary for proper cell differentiation. Based on the data shown in this article and previous work, we hypothesize that RCD1 and SRO1 are involved in redox control and, in their absence, an altered redox balance leads to abnormal development
The dental calculus metabolome in modern and historic samples.
INTRODUCTION: Dental calculus is a mineralized microbial dental plaque biofilm that forms throughout life by precipitation of salivary calcium salts. Successive cycles of dental plaque growth and calcification make it an unusually well-preserved, long-term record of host-microbial interaction in the archaeological record. Recent studies have confirmed the survival of authentic ancient DNA and proteins within historic and prehistoric dental calculus, making it a promising substrate for investigating oral microbiome evolution via direct measurement and comparison of modern and ancient specimens. OBJECTIVE: We present the first comprehensive characterization of the human dental calculus metabolome using a multi-platform approach. METHODS: Ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) quantified 285 metabolites in modern and historic (200 years old) dental calculus, including metabolites of drug and dietary origin. A subset of historic samples was additionally analyzed by high-resolution gas chromatography-MS (GC-MS) and UPLC-MS/MS for further characterization of metabolites and lipids. Metabolite profiles of modern and historic calculus were compared to identify patterns of persistence and loss. RESULTS: Dipeptides, free amino acids, free nucleotides, and carbohydrates substantially decrease in abundance and ubiquity in archaeological samples, with some exceptions. Lipids generally persist, and saturated and mono-unsaturated medium and long chain fatty acids appear to be well-preserved, while metabolic derivatives related to oxidation and chemical degradation are found at higher levels in archaeological dental calculus than fresh samples. CONCLUSIONS: The results of this study indicate that certain metabolite classes have higher potential for recovery over long time scales and may serve as appropriate targets for oral microbiome evolutionary studies
- …