21 research outputs found

    Digital Twins of production systems - Automated validation and update of material flow simulation models with real data

    Get PDF
    Um eine gute Wirtschaftlichkeit und Nachhaltigkeit zu erzielen, müssen Produktionssysteme über lange Zeiträume mit einer hohen Produktivität betrieben werden. Dies stellt produzierende Unternehmen insbesondere in Zeiten gesteigerter Volatilität, die z.B. durch technologische Umbrüche in der Mobilität, sowie politischen und gesellschaftlichen Wandel ausgelöst wird, vor große Herausforderungen, da sich die Anforderungen an das Produktionssystem ständig verändern. Die Frequenz von notwendigen Anpassungsentscheidungen und folgenden Optimierungsmaßnahmen steigt, sodass der Bedarf nach Bewertungsmöglichkeiten von Szenarien und möglichen Systemkonfigurationen zunimmt. Ein mächtiges Werkzeug hierzu ist die Materialflusssimulation, deren Einsatz aktuell jedoch durch ihre aufwändige manuelle Erstellung und ihre zeitlich begrenzte, projektbasierte Nutzung eingeschränkt wird. Einer längerfristigen, lebenszyklusbegleitenden Nutzung steht momentan die arbeitsintensive Pflege des Simulationsmodells, d.h. die manuelle Anpassung des Modells bei Veränderungen am Realsystem, im Wege. Das Ziel der vorliegenden Arbeit ist die Entwicklung und Umsetzung eines Konzeptes inkl. der benötigten Methoden, die Pflege und Anpassung des Simulationsmodells an die Realität zu automatisieren. Hierzu werden die zur Verfügung stehenden Realdaten genutzt, die aufgrund von Trends wie Industrie 4.0 und allgemeiner Digitalisierung verstärkt vorliegen. Die verfolgte Vision der Arbeit ist ein Digitaler Zwilling des Produktionssystems, der durch den Dateninput zu jedem Zeitpunkt ein realitätsnahes Abbild des Systems darstellt und zur realistischen Bewertung von Szenarien verwendet werden kann. Hierfür wurde das benötigte Gesamtkonzept entworfen und die Mechanismen zur automatischen Validierung und Aktualisierung des Modells entwickelt. Im Fokus standen dabei unter anderem die Entwicklung von Algorithmen zur Erkennung von Veränderungen in der Struktur und den Abläufen im Produktionssystem, sowie die Untersuchung des Einflusses der zur Verfügung stehenden Daten. Die entwickelten Komponenten konnten an einem realen Anwendungsfall der Robert Bosch GmbH erfolgreich eingesetzt werden und führten zu einer Steigerung der Realitätsnähe des Digitalen Zwillings, der erfolgreich zur Produktionsplanung und -optimierung eingesetzt werden konnte. Das Potential von Lokalisierungsdaten für die Erstellung von Digitalen Zwillingen von Produktionssystem konnte anhand der Versuchsumgebung der Lernfabrik des wbk Instituts für Produktionstechnik demonstriert werden

    Simulation einer Fabrik zur integrierten Herstellung und Wiederaufarbeitung von Batterien

    Get PDF
    The current trend of increasing usage of batteries in electro-mobility and other applications can only be ecologically and economically sustainable if the batteries are not disposed at the end of their lifecycle but re-entered into the value chain. To benefit from the economies of scale, the re-introduction of the used batteries (or their components) into the linear manufacturing system would be favourable. This poses new, complex challenges to production planning and control, which can be tackled with the help of discrete event simulation (DES). For its application in an integrated factory which includes common linear production and circular processes, new modelling and control approaches are needed. These approaches are presented in this paper, applied to a planned production system in a research environment, and used for performing experiments, which give deeper insights into the requirements and economic viability of the integrated manufacturing and remanufacturing of batteries

    Reinforcement Learning Based Production Control of Semi-automated Manufacturing Systems

    Get PDF
    In an environment which is marked by an increasing speed of changes, industrial companies have to be able to quickly adapt to new market demands and innovative technologies. This leads to a need for continuous adaption of existing production systems and the optimization of their production control. To tackle this problem digitalization of production systems has become essential for new and existing systems. Digital twins based on simulations of real production systems allow the simplification of analysis processes and, thus, a better understanding of the systems, which leads to broad optimization possibilities. In parallel, machine learning methods can be integrated to process the numerical data and discover new production control strategies. In this work, these two methods are combined to derive a production control logic in a semi-automated production system based on the chaku-chaku principle. A reinforcement learning method is integrated into the digital twin to autonomously learn a superior production control logic for the distribution of tasks between the different workers on a production line. By analyzing the influence of different reward shaping and hyper-parameter optimization on the quality and stability of the results obtained, the use of a well-configured policy-based algorithm enables an efficient management of the workers and the deduction of an optimal production control logic for the production system. The algorithm manages to define a control logic that leads to an increase in productivity while having a stable task assignment so that a transfer to daily business is possible. The approach is validated in the digital twin of a real assembly line of an automotive supplier. The results obtained suggest a new approach to optimizing production control in production lines. Production control shall be centered directly on the workers’ routines and controlled by artificial intelligence infused with a global overview of the entire production system

    Entwicklung eines pull-Konzepts mittels eines Simulationsmodells zur Betreuung der Anlaufphase der Serienfertigung von Brennstoffzellen

    Get PDF
    As technology advances, alternatives to the internal combustion engine, such as battery and fuel cell-driven electric mobility, are becoming increasingly attractive. Sustainable propulsion by battery has already been widely researched and is being mass-produced. The fuel cell, on the other hand, is not yet being produced to the same extent. To develop the fuel cell into a serious competitor to the battery, its series production must be targeted to further reduce costs. In addition, the increasing demand for fuel cells can only be satisfied through series production. For the flexible use of fuel cells in buses, trucks, and cars, production with a wide range of variants is also necessary. For the conception of series production, a realistic simulation of the material flow is an important component. This paper presents an approach for an intelligent pull concept to decouple material flow and at the same time reduce setup cost

    Foresighted digital twin for situational agent selection in production control

    Get PDF
    As intelligent Data Acquisition and Analysis in Manufacturing nears its apex, a new era of Digital Twins is dawning. Foresighted Digital Twins enable short- to medium-term system behavior predictions to infer optimal production operation strategies. Creating up-to-the-minute Digital Twins requires both the availability of real-time data and its incorporation and serve as a stepping-stone into developing unprecedented forms of production control. Consequently, we regard a new concept of Digital Twins that includes foresight, thereby enabling situational selection of production control agents. One critical element for adequate system predictions is human behavior as it is neither rule-based nor deterministic, which we therefore model applying Reinforcement Learning. Owing to these ever-changing circumstances, rigid operation strategies crucially restrain reactions, as opposed to circumstantial control strategies that hence can outperform traditional approaches. Building on enhanced foresights we show the superiority of this approach and present strategies for improved situational agent selection

    Continuous adaption through real data analysis turn simulation models into digital twins

    Get PDF
    Digital twins of production systems enable new forms of production control, flexibility and continuous improvement. While off-the-shelf software for discrete-event simulation permits the fast implementation of rough simulation models with sufficient accuracy for project-based analysis, they lack the precision and generality of a digital twin. This paper presents an approach to close the gap between model and reality by continuous and iterative updates enabled by connecting the simulation model to IT systems and smart data analysis. However, handling different databases requires a generative and flexible modelling approach as well as suitable algorithms for probability distribution estimation and control logic identification. The presented approach was validated at a real world example from the automotive industry where an average deviation of output to reality per week of 0.1% was achieved, proving the effectiveness of the approach

    Exact Hybrid Particle/Population Simulation of Rule-Based Models of Biochemical Systems

    Get PDF
    Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This "network-free" approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of "partial network expansion" into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings can be achieved using the new approach and a monetary cost analysis provides a practical measure of its utility. © 2014 Hogg et al

    Modeling of a Modular Discrete Event Simulation for Fuel Cell Assembly within a Factory Model

    No full text
    Nowadays, shorter product life cycles and fluctuating demand quantities require flexible and adaptable production planning techniques. Fuel cell technology offers an innovative product, for which future demands in terms of quantities and variety are difficult to predict making it hardly possible to plan demand-adequate production capacities. One feasible solution is the application of Discrete Event Simulations (DES) with a high degree of adaptability and scalability. In this paper, a concept for the modular simulation of assembly lines with scalable automation is introduced and applied to an assembly line for fuel cell stacks. The model presents a modular and hierarchical system structure, which allows for adaptability and reusability. The model can be easily integrated on a factory level to study the behavior of parallel assembly lines. For an industrial use case different experiments offer valuable insights for the optimization, the automation and the upscaling of the assembly.Kürzere Produktlebenszyklen und schwankende Bedarfsmengen erfordern heute flexible und anpassungsfähige Produktionsplanungstechniken. Die Brennstoffzellentechnologie bietet ein innovatives Produkt, dessen zukünftige Nachfrage hinsichtlich Stückzahl und Vielfalt nur schwer vorhersehbar ist und somit kaum bedarfsgerechte Produktionskapazitäten planbar sind. Eine mögliche Lösung ist die Anwendung von Discrete Event Simulations (DES) mit einem hohen Maß an Anpassungsfähigkeit und Skalierbarkeit. In diesem Beitrag wird ein Konzept zur modularen Simulation von Montagelinien mit skalierbarem Automatisierung vorgestellt und auf eine Montagelinie für Brennstoffzellenstacks angewendet. Das Modell nutzt eine modulare und hierarchische Systemstruktur, die Anpassungsfähigkeit und Wiederverwendbarkeit ermöglicht. Das Modell kann leicht auf Fabrikebene integriert werden, um das Verhalten paralleler Montagelinien zu untersuchen. Für einen industriellen Anwendungsfall bieten verschiedene Experimente wertvolle Erkenntnisse zur Optimierung, Automatisierung und Hochskalierung der Montagelinie

    Modeling of a Modular Discrete Event Simulation for Fuel Cell Assembly within a Factory Model

    No full text
    Nowadays, shorter product life cycles and fluctuating demand quantities require flexible and adaptable production planning techniques. Fuel cell technology offers an innovative product, for which future demands in terms of quantities and variety are difficult to predict making it hardly possible to plan demand-adequate production capacities. One feasible solution is the application of Discrete Event Simulations (DES) with a high degree of adaptability and scalability. In this paper, a concept for the modular simulation of assembly lines with scalable automation is introduced and applied to an assembly line for fuel cell stacks. The model presents a modular and hierarchical system structure, which allows for adaptability and reusability. The model can be easily integrated on a factory level to study the behavior of parallel assembly lines. For an industrial use case different experiments offer valuable insights for the optimization, the automation and the upscaling of the assembly.Kürzere Produktlebenszyklen und schwankende Bedarfsmengen erfordern heute flexible und anpassungsfähige Produktionsplanungstechniken. Die Brennstoffzellentechnologie bietet ein innovatives Produkt, dessen zukünftige Nachfrage hinsichtlich Stückzahl und Vielfalt nur schwer vorhersehbar ist und somit kaum bedarfsgerechte Produktionskapazitäten planbar sind. Eine mögliche Lösung ist die Anwendung von Discrete Event Simulations (DES) mit einem hohen Maß an Anpassungsfähigkeit und Skalierbarkeit. In diesem Beitrag wird ein Konzept zur modularen Simulation von Montagelinien mit skalierbarem Automatisierung vorgestellt und auf eine Montagelinie für Brennstoffzellenstacks angewendet. Das Modell nutzt eine modulare und hierarchische Systemstruktur, die Anpassungsfähigkeit und Wiederverwendbarkeit ermöglicht. Das Modell kann leicht auf Fabrikebene integriert werden, um das Verhalten paralleler Montagelinien zu untersuchen. Für einen industriellen Anwendungsfall bieten verschiedene Experimente wertvolle Erkenntnisse zur Optimierung, Automatisierung und Hochskalierung der Montagelinie

    Modeling of a Modular Discrete Event Simulation for Fuel Cell Assembly within a Factory Model

    No full text
    Nowadays, shorter product life cycles and fluctuating demand quantities require flexible and adaptable production planning techniques. Fuel cell technology offers an innovative product, for which future demands in terms of quantities and variety are difficult to predict making it hardly possible to plan demand-adequate production capacities. One feasible solution is the application of Discrete Event Simulations (DES) with a high degree of adaptability and scalability. In this paper, a concept for the modular simulation of assembly lines with scalable automation is introduced and applied to an assembly line for fuel cell stacks. The model presents a modular and hierarchical system structure, which allows for adaptability and reusability. The model can be easily integrated on a factory level to study the behavior of parallel assembly lines. For an industrial use case different experiments offer valuable insights for the optimization, the automation and the upscaling of the assembly.Kürzere Produktlebenszyklen und schwankende Bedarfsmengen erfordern heute flexible und anpassungsfähige Produktionsplanungstechniken. Die Brennstoffzellentechnologie bietet ein innovatives Produkt, dessen zukünftige Nachfrage hinsichtlich Stückzahl und Vielfalt nur schwer vorhersehbar ist und somit kaum bedarfsgerechte Produktionskapazitäten planbar sind. Eine mögliche Lösung ist die Anwendung von Discrete Event Simulations (DES) mit einem hohen Maß an Anpassungsfähigkeit und Skalierbarkeit. In diesem Beitrag wird ein Konzept zur modularen Simulation von Montagelinien mit skalierbarem Automatisierung vorgestellt und auf eine Montagelinie für Brennstoffzellenstacks angewendet. Das Modell nutzt eine modulare und hierarchische Systemstruktur, die Anpassungsfähigkeit und Wiederverwendbarkeit ermöglicht. Das Modell kann leicht auf Fabrikebene integriert werden, um das Verhalten paralleler Montagelinien zu untersuchen. Für einen industriellen Anwendungsfall bieten verschiedene Experimente wertvolle Erkenntnisse zur Optimierung, Automatisierung und Hochskalierung der Montagelinie
    corecore