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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Digital twins of production systems enable new forms of production control, flexibility and continuous improvement. While off-the-shelf software 
for discrete-event simulation permits the fast implementation of rough simulation models with sufficient accuracy for project-based analysis, they 
lack the precision and generality of a digital twin. This paper presents an approach to close the gap between model and reality by continuous and 
iterative updates enabled by connecting the simulation model to IT systems and smart data analysis. However, handling different databases 
requires a generative and flexible modelling approach as well as suitable algorithms for probability distribution estimation and control logic 
identification. The presented approach was validated at a real world example from the automotive industry where an average 
deviation of output to reality per week of 0.1% was achieved, proving the effectiveness of the approach. 
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1. Introduction 

Because of accelerating advances in science and technology 
and fast changing customer preferences and requirements, the 
life cycle of many products continuously decreases. Companies 
hence have to constantly adapt their production systems to new 
product variants [1]. Maintaining productivity also for variants 
that the system was not originally designed for and managing 
the transition between product generations as smooth as 
possible requires a constant analysis of the system, because the 
insights become obsolete rapidly. 

An important tool for the analysis and improvement of 
dynamic systems is simulation, in the case of production 
systems mostly discrete-event material flow simulation is used. 
The disadvantage of simulation is the high manual effort 
required for modelling, data acquisition and preparation. The 
traditional approach to simulation is project based [2] so that 

the model is used only for a given set of tasks in a predefined 
timeframe and abandoned afterwards. 

The goal of the proposed approach is to extend the usage 
time and improve the accuracy of a discrete-event simulation 
model while maintaining or even reducing the initial manual 
effort for modelling and implementation. Increasing benefits 
by constant costs will improve the return on investment of 
simulation in production. 

To achieve this, a methodology for regular updates and 
constant improvement of an existing simulation model was 
developed, which turns a manually created simulation model 
into a real digital twin of the production system. The automated 
simulation data update is explained for two exemplary 
parameters and validated on an automotive industry use case. 

The paper is divided into the following parts: After the 
introduction, Chapter 2 presents previous works and derives the 
open research question. Chapter 3 describes the methodology 
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how to turn a simulation model into a digital twin of the 
production system. The use case is presented in Chapter 4 and 
the validation of two exemplary parameters is shown in 
Chapter 5. Finally, the paper is summarized, and an outlook 
provided. 

2. Literature review 

[3] describe the digital twin concept as the next wave in 
simulation, which turns simulation into a core functionality of 
the system by complete integration of the simulation model into 
the product-service-system and its assistance along its entire 
life cycle. 

[4] define a digital twin as following: “A Digital Twin (DT) 
is more than a simple model or simulation. A DT is a living, 
intelligent and evolving model, being the virtual counterpart of 
a physical entity or process. It follows the lifecycle of its 
physical twin to monitor, control, and optimize its processes 
and functions.” A key feature of digital twins must therefore be 
their ability to automatically adapt to changes in the real system 
through real data. 

The problem of the short usage period of most simulation 
models in which a lot of effort was put in, is a regularly 
discussed subject in research communities which use and 
enhance simulation as a tool. 

One of the first papers covering this subject remains on a 
theoretical level and dismembers the reusable system in its 
components [5]. Many of the discussed issues as the reuse of 
code have in the meantime already been solved i.e. by object-
oriented programming. 

[6] calls the full model reuse the “holy grail” of some parts 
of the simulation community. One answer is presented by [7], 
who develops an approach for the automated generation of 
adaptive simulation models based on a standardized data 
framework called Core Manufacturing Simulation Data. This 
adaptive simulation model approach includes dynamic 
behavior i.e. priority rules for lot sizing, resource occupation 
and production order. This approach requires the data to be 

provided according to this standard, which is an obstacle for its 
industrial application. 

The same downside has the work of [8] which also relies on 
a certain data model described with an ontology. The authors 
give a formal description framework which enables the 
automatic creation of simulation models. 

[9] call the same concept “after-use” and distinguish 
between re-use and further-use, each bringing different benefits 
but also obstacles. 

A theoretic discussion on several topics concerning the 
reuse of simulation components ranging from small portions of 
code to full models is given by [10]. 

[11] define different ways how real input data can be 
transferred into the simulation model. The approach presented 
in this paper follows the methodology, in which external data 
is automatically populated, because of the centralized data 
acquisition, high accessibility of data and the easy transfer of 
collected input data to other simulation tools. 

The concept of self-adaptability of discrete-event simulation 
(SADES) is discussed by [12]. A feedback structure which 
should enable adaption is proposed but stays on a theoretic 
level without prototype implementation. 

Despite many approaches, the idea of creating a truly 
adaptive simulation remains an open challenge to research. 
Especially the issue of automated modelling of the dynamic 
behavior (e.g. material flow) remains unsolved. Early attempts 
were made by [13] using a meta-model for the description of 
strategies giving them a predefined structure. The emulation of 
scheduling strategies with the help of machine learning is tested 
by [14]. 

Another approach to the automated simulation of dynamic 
behavior can be the use of process mining. In order to examine 
the behaviour of real production processes, [15] develops a 
system architecture for the analysis of manufacturing data 
using process mining techniques. Furthermore, [16] presents an 
approach to automatically construct simulation models as 
coloured petri nets based on process execution logs. The 
relation of discrete-event simulation and process mining is 
discussed by [17]. Process mining could be used to create fact-

Fig. 1. Update logic of Digital Twin 
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based simulation models and automate parts of the modelling 
process. A real-world application of process mining for 
simulation creation cannot yet be found. 

Several authors discuss the application of digital twins in 
manufacturing but do not discuss the data integration and 
information extraction needed for the digital twin. Extensive 
reviews of the numerous applications of digital twins in 
manufacturing can be found in [18] and [19]. 

The open research question that this work wants to address 
is therefore the development and implementation of a general 
concept of how a common simulation model can be turned into 
a digital twin of the production system. Particular focus lies on 
the automated capture of dynamic behaviour using process 
mining. 

3. Own Approach 

3.1. Methodology 

To increase validity and prolong usability a simulation model 
has to be frequently compared to reality and adapted if needed. 
This task is highly repetitive and should thus be automated, 
which in turn leads to convergence of the simulation model to 
reality turning it to a real digital twin. 

Fig. 1 explains how a simulation model of a production 
system is turned into a digital twin of the production system by 
periodic comparison with reality and, if necessary, appropriate 
updates. Starting point is a manually defined and implemented 
initial rough simulation model of the production system using 
predefined generic building blocks, for example as defined in 
[20] for semi-automated production systems. 

Following the digital twin definition of [21], the initial 
rough model would resemble the digital master of the 
production system, which depicts the underlying abstract 
concept of the system, and the collected input data resembles 
the digital shadow of the system, which incorporates all 
relevant data of a specific instance of the system. This analogy 
holds true only partially since the model itself can be adapted, 
but it gives a good guideline in understanding our approach. 

The validation pipeline is described in Fig. 2. After the 
definition of an appropriate time period that shall be considered 
for validation, the relevant data is queried from the data bases. 
This includes produced parts in this period as well as 
extraordinary events that might have to be considered explicitly 
in the validation runs. The number of simulation runs depends 
on the inherent volatility of the system and a trade-off between 
computation time and statistical significance has to be made. 
After step 5, the execution of the simulation runs, the metrics 
to compare simulation and reality have to be calculated. 

If the difference between simulation model and reality 
exceeds a certain threshold, the model has to be adapted until 
the difference to reality is acceptable. Difference between 
model and reality can be measured by the output in a given time 
frame or more specific by the comparison of certain key values 
of the system, for example buffer occupation or machine 
workload. The possible adaptions of the model can be divided 
into three categories: parameter values, layout, and logics. The 
adaption of each of these categories require different data 
sources, validation and adaption algorithms. Table 1 lists 

examples for the contents of each category. Since a detailed 
discussion of each component would exceed the paper limits, 
three examples will be discussed in the following in greater 
detail to give insights in the comparison and adaption 
algorithms. The representatives for parameter values will be 
machine processing times and scrap rate and for logics it will 
be the material flow. 

 

 

Fig. 2. Validation pipeline of digital twin 

 

Table 1. Extract of components of discrete-event material 
flow simulation 

Parameter values Layout Logics 
Machine processing 
times 

Number and 
position of 
machines 

Material flow 

Manual processing 
times 

Number and 
position of 
conveyors 

Scheduling 

Transport time Number and 
positions of buffers 

Worker control 

Scrap rate Number of workers Maintenance 
planning 

Failure behavior … Replenishment 
method 

Buffer sizes … … 

3.2. Machine processing time 

Machining time is a crucial constraint in most production 
systems. Processing times are normally captured by the 
machines, but the raw production data often has to be 
preprocessed and analyzed to be usable, since it can be 
disturbed by external influences as failures, human worker 
interaction or commissioning. For simulation, not only the 
average value of a parameter is important but also the 
underlying distribution. This requires besides the mean value 
also at least the standard deviation, which should be calculated 
from historic data. 

The probability density functions for the machine 
processing times are obtained according to the steps of [22], but 
instead of a χ²-test an Anderson-Darling-test is used to check 
the fit of the calculated distribution with the historic data, since 
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this test shows better performance. If the statistical hypothesis 
test fails, the data point furthest away from the calculated 
distribution mean is deleted. Then a new normal distribution is 
calculated based on the reduced data set and tested again. This 
process is repeated automatically until the distribution matches 
with the remaining historic data, which in this way is cleaned 
of outliers. An exemplary comparison of historic data (in blue) 
to the calculated distribution is shown in Fig. 3. 

 

 

Fig. 3. Historic data and calculated normal distribution 

3.3. Automatic input of scrap rate 

The scrap rate is another important parameter for modelling 
the production system. It can be calculated for example using 
the quality protocol of testing stations or using the difference 
of products started to products finished successfully 
considering the products still in production. The general 
formula is: 

 (1) 

3.4. Deduction of material flow 

After all machines as the core objects of production are 
initialized their connections must be modelled. The key 
element, which connects machines to one another, is the flow 
of parts through the system. It varies for different product 
variants, as they require different processing steps. 
Furthermore, parallel machines may exist. In addition, rework 
stations may be needed if quality problems appear. 
 
Table 2. Example of an event log for production data 
Case id Event id Attributes 
(Part id) 

 
Timestamp Activity Variant Result … 

103022 30010 15-06-2020:09:32 St. 3.1.1 887112 good … 
103022 30011 15-06-2020:10:12 St. 3.1.2 887112 good … 
103022 30014 15-06-2009:11:04 St. 7.1.1 887112 good … 
… … … … … … … 
103045 30078 16-06-2020:11:01 St. 3.1.1 887112 good … 
103045 30079 16-06-2020:11:47 St. 3.1.2 887112 good … 
103045 30080 16-06-2020:12:13 St. 5.1.1 887112 good … 
… … … … … … … 

 

A simulation model should be able to describe different flow 
behaviours. This could be done using planning data. However, 
in the context of the digital twin, it is important to model the 
real behaviour and therefore use real production data. Event 
logs from Manufacturing Execution Systems (MES) as shown 
in Table 2 can be used for process analysis. For a specific part 
the process at each workstation is documented with 
timestamps, result status and other information such as the 
product variant. 

Process mining methods can be applied to the event log if 
enough process instances are available and identifiable, in this 
example as part id. Furthermore, it is necessary to sort the 
activities according to the timestamps. 

To derive the material flow the Alpha Algorithm [23] was 
applied. This process discovery method examines the order of 
activities in the different sequences. It results in relations of 
activities and control flow patterns and creates a Petri net as 
shown in Fig. 4. Parallel paths and decision points are 
modelled. 

Satisfying results require an appropriate data selection and 
preparation. For example, it is advisable to filter the event log 
for a product variant and recognize the specific material flow 
for this variant. To maintain the general process, rare or 
unwanted process characteristics have to be filtered out. For 
example, only process instances that did not require rework 
shall be considered. This would exclude the path via the rework 
stations. If data is queried over a fixed period, incomplete 
sequences may be included. Rare or incomplete process 
variants can be removed, or processes can be filtered by the 
number of activities they contain. If certain start or end 
activities are required, this can also be considered in the 
preparation. 

Based on the discovered process models the objects of a 
simulation model are connected. In addition, routing tables are 
created for product variants, which are used in the model. 
Generated parts receive these tables depending on their product 
variant. To ensure routing tables remain valid, the derivation of 
the material flow has to be repeated regularly. Therefore, the 
described approach should be automated via a script, which 
executes the steps. New required routing tables are created 
automatically, and existing tables can be checked for 
correctness. A direct connection to the production database is 
necessary. Relevant data must be clearly defined and the 
settings for data preparation must be reliable. 

The first discovered process models should be interpreted 
carefully by an expert. If they are not satisfying, the steps of 
data selection and preparation and the application of process 
discovery algorithms have to be repeated iteratively. Once the 
process mining algorithm is stable it will be deployed to work 
automatically. 

The material flow can also be used to gain information about 
the layout of the production system covering therefore a further 
component of the digital twin (Table. 1): number of machines, 
conveyors and buffers can be inferred, as well as, to a certain 
extent, relative positioning of these equipment to each other. 

In addition, further process analysis can be performed based 
on the prepared data. For example, the comparison of time 
intervals between the activities or throughput times of the entire 
process often provide deeper understanding of the system 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
# 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

# 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡  
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behaviour. Additional attributes such as executing resources 
can be added to the event data for further analysis. 

4. Use Case 

4.1. Description 

This research is part of a research cooperation between the 
wbk Institute of Production Science at KIT and the central 
department Connected Manufacturing of the Bosch business 
unit Powertrain Solutions for diesel, gas and electric drives 
with the goal to develop an agile production system. 

The methodology is validated at a series production of 
automotive components. The objective is to create a digital 
twin of a chaku-chaku production line, which consists of an 
assembly and a testing area. The assembly is done in a classic 
u-shaped cell. Most of the processes run an automated machine 
process, but manual labor is still required to insert the product 
und parts into the machine as well as to remove the part after 
the machine process. The workers perform some of the 
transport tasks between machines, other transports are 
performed by conveyors. Different article types include 
different parts, which have to be processed at different stations. 
Therefore, the part routing depends on the variant. 

4.2. Implementation 

A simulation model of the production line was implemented 
in Technomatrix Plant Simulation from Siemens. 

The machine processing times of the various machines were 
cleaned and the underlying distribution was obtained with the 
developed methodology. The assumption that the machine 
processing times follow a normal distribution was confirmed 
by a preliminary analysis of different probability distributions 
on the various machine processing times. 

The scrap rate could be calculated directly from the existing 
test protocols of the testing stations, enabling a direct 
integration of this information in the simulation model without 
further data preparation methods. 

The deduction of the material flow for different product 
variants was successfully applied to the industrial application 
using the event logs of the workstations. These contain the 
processing steps, duration, result status and its timestamp as 

well as the part id as process identification. The used 
production data is stored in a central data base. 

The developed Python script directly accesses the data and 
prepares it automatically. Only faultless process instances are 
considered. Incomplete and rare process instances are removed 
by filtering on start and end activities and process length. The 
process model is discovered by the Alpha Algorithm. For the 
implementation the Python library PM4Py [24] was used. 

Fig. 4 presents a discovered material flow of a product 
variant. This was derived for three lines of the production 
system assembly, testing and packaging. The beginning of the 
assembly shows independent processing steps while the 
beginning of the testing divides similar processing steps to 
several workstations. 

In addition, routing tables are automatically created from the 
variant-specific process models for use in the simulation. 
However, a few production stations do not collect data. These 
are missing in the discovered process models. For the creation 
of routing tables, these stations have to be assumed as given. 

Further components of the simulation model like scrap rate, 
failures, and regular activities as for example machine cleaning 
can also be extracted automatically from the available MES 
data. The comparison of the digital twin to reality is not yet 
fully automated, so that the update has to be started manually 
by the simulation user. 

5. Validation 

5.1. Behavior and Output 

The accuracy of the digital twin to reality was measured by 
the output over time. The key validation value is the output in 
a defined time period, for example a shift, a day, or a week. An 
average difference of output over a week for five simulation 
runs compared to reality of 0.1% was achieved. 

Another important value to consider when validating the 
model is the spread of the simulation outputs compared to the 
real spread. Fig. 5 shows that the spread of overall equipment 
effectiveness (OEE) in the simulation is slightly smaller than 
the real one, but equally balanced and the mean is very close to 
the real one. The whisker of the box plot show the last point 
that is inside interquartile range times 1.5. 

Fig. 4. Discovered material flow for a product variant as petri net 
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5.2. Transferability 

The approach was applied at four lines in the same plant that 
produce the same product but in different variants. So the 
system was modelled on a general level based on an exemplary 
line and then instantiated for each line. This was possible with 
the chosen approach, even if it is not yet fully automated. 
Certain steps still have to be done manually, especially data 
extraction from sources that are difficult to access 
automatically as for example unstructured data. 

 

Fig. 5. Boxplots comparing spread of hourly OEE values over one week in 
simulation and reality (scale was changed) 

6. Conclusion and outlook 

A methodology to create an adaptive simulation model, 
which in the end leads to a digital twin of the production system 
based on regularly updating the model was presented. In 
particular, the approaches for automated deduction of the 
material flow by process mining as well as of the machine 
processing times with the Anderson-Darling-test were 
explained in greater detail. The fully automated 
implementation of the presented methodology is not yet 
completed since some components of the layout and logic 
cannot yet be identified from the existing data. 

Challenges that remain to be solved are the identification of 
changes in the layout, e.g. new machines and conveyors or their 
repositioning. To streamline the validation process a method to 
define the adequate validation time period is important. 

The presented approach can be used to ensure a longer 
usable period of a simulation model which results in higher 
benefits over time. 

Further research topics that arise are the evaluation of the 
convergence of the simulation model to reality as well of the 
reaction of the digital twin to changes in the real system. 
Another possible extension would be the use of the process 
mining approach for the automated modelling of more 
components of the dynamic behavior of the production system. 
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