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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 

Procedia CIRP 99 (2021) 27–32

2212-8271 © 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 14th CIRP Conference on Intelligent Computation in Manufacturing Engineering, 
15-17 July 2020.
10.1016/j.procir.2021.03.005

© 2021 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 14th CIRP Conference on Intelligent Computation in Manufacturing Engineering, 
15-17 July 2020.

Available online at www.sciencedirect.com

ScienceDirect 
Procedia CIRP 00 (2020) 000–000

     www.elsevier.com/locate/procedia

2212-8271 © 2020 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 14th CIRP Conference on Intelligent Computation in Manufacturing Engineering.

14th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME ‘20

Foresighted digital twin for situational agent selection in production control
Marvin Carl Maya,*, Leonard Overbecka, Marco Wurstera, Andreas Kuhnlea, Gisela Lanzaa

a wbk Institute of Production Science, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany

* Corresponding author. Tel.: +49-1523-950-2624; E-mail address: marvin.may@kit.edu

Abstract

As intelligent Data Acquisition and Analysis in Manufacturing nears its apex, a new era of Digital Twins is dawning. Foresighted Digital Twins 
enable short- to medium-term system behavior predictions to infer optimal production operation strategies. Creating up-to-the-minute Digital 
Twins requires both the availability of real-time data and its incorporation and serve as a stepping-stone into developing unprecedented forms of 
production control. Consequently, we regard a new concept of Digital Twins that includes foresight, thereby enabling situational selection of 
production control agents. One critical element for adequate system predictions is human behavior as it is neither rule-based nor deterministic, 
which we therefore model applying Reinforcement Learning. Owing to these ever-changing circumstances, rigid operation strategies crucially 
restrain reactions, as opposed to circumstantial control strategies that hence can outperform traditional approaches. Building on enhanced 
foresights we show the superiority of this approach and present strategies for improved situational agent selection.
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1. Motivation

In the wake of increased data availability a surge in the 
application of Industry 4.0 applications can be observed [1]. A
major driver for such applications is the rising demand for 
individualized products at industrialized costs achieved 
through “volume-related economies” [2]. Hence, production 
system flexibility and agility is known as a key requirement, 
inducing the need for powerful production control methods [3].
While traditional production control by means of advanced 
heuristics or mathematical optimization is easily 
comprehensible, modern learning techniques, such as 
reinforcement learning based [4] or monte carlo tree search 
based [5], can improve overall production system performance. 
However, solely using these control forms comes at the 
expense of further disadvantages, as indicated in Table 1. Thus, 
the individualized evaluation of production control methods is 
necessary in order to find the most suitable technique for the 
production system and circumstances at hand.

The idea of Cyber-Physical Production Systems (CPPS) has 
long aimed at providing transparency, allowing real-time 

production control, empowering the Internet of Things (IoT) 
and production data analyses [6, 7]. Digital Twins that extend 
this notion become increasingly popular fields of research [8],
as they enable to check production system conformance to 
product requirements. Further advantages are the simplification 
and speeding up of data acquisition, production system 
planning [6] and acting as an enabler towards the digital 
transformation [9] which resulted in high prospects [7]. As 
opposed to the application of Digital Twins for future 
predictions for production planning [6], the introduction of 
foresight for near-real-time decisions is largely unexplored. 
Thus, this paper addresses this research gap by presenting a 
framework for production control agent selection by means of 
situational digital twin foresight.
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Table 1. Comparison between production control approaches for Industry 4.0

Criterion Mathematical 
Optimization

Heuri
stics

Reinforce
-ment 
Learning

Monte 
Carlo 
Tree 
Search

Single Objective ● ● ● ●
Global Perspective ● ◐ ● ●
Flexibility ○ ◐ ◐ ◐
Adaptability ○ ◐ ◐ ●
Real-time Operation ○ ● ● ◐
Computing Power high low medium medium

New Situation 
Handling

◐ ◐ ● ◐

Robustness ○ ◐ ● ◐
Customization ● ◐ ● ●
Reliability ● ◐ ◐ ◐
Comprehensibility ◐ ● ○ ◐

Legend: ○:not fulfilled - ◐:partially fulfilled - ●:fulfilled 

The remainder of this paper is structured as follows: Within 
Section 2 Production Planning and Control (PPC) as well as 
Digital Twins are defined, followed by Section 3 which 
presents the methods for advancing digital twins with foresight. 
The case study and its results are presented in Section 4. The 
paper is concluded with a discussion and outlook in Section 5.

2. Digitalized Production Planning and Control

Production Planning and Control (PPC) serves a holistic 
approach incorporating time, financial flow and material flow 
for the optimization of production systems [10]. Traditional 
PPC has been focused around the three partially segregated 
dimensions: (1) strategic, (2) tactical and (3) operational 
decision making time-horizon [11]. However, the subdivision 
into three sub-problems followed by separate optimizations 
may not be well suited for the adaptability required by agile and 
changeable production systems. The integration of 
technological solutions to tear down the separating walls of 
traditional PPC can mitigate the influences of time-wise 
partitioning and pave the way towards a truly Smart Factory 
[12]. In particular, on an operational level production control 
can integrate both the analytical capabilities of Digital 
Shadows and the real-time capabilities of production system 
Digital Twins [12].

2.1. Digital Shadow

A Digital Shadow in production system context “provides a 
holistic concept for a manufacturing-oriented information 
(supply) system” [13] and additionally serves as an interface 
connecting data storage, acquisition and warehouse [14] for 
production oriented data analytics. Despite technical 
challenges and differences in concrete implementations, the 
main concept is to feasibly link the information generated 

Fig. 1. Instantiation of digital twins for production systems

within the production system as well as the information control 
and feedback [13]. In particular the introduction of automated 
data acquisition, data connection and correlation [14] enables 
the analysis of physical processes in a cyber sphere. In doing 
so, the system's status at any point within the entire history can 
be digitally accessed [12]. Thus, creating up-to-the-minute 
digital shadows enables the latent and up-to-date description of 
production systems states.

2.2. Digital Twin

While the definition of a Digital Twin is incomplete, limited 
[8] and extremely diverse [9], herein the following definition is 
used: “A Digital Twin is” the digital instantiation “of a unique
(physical) asset” with “similar properties, conditions and 
behavior” [8]. The exact technical realization however may 
differ [15], yet the underlying structure consisting of a Digital 
Master and a Digital Shadow [8] remains. The Digital Master 
can launch several instances of Digital Twins based on the 
information released from planning data and the corresponding 
timely information given by the Digital Shadow as shown in 
Figure 1. Creating Digital Twins in hindsight allows an in-
depth analysis of past events through data analytics. Thus, 
optimization through simulations can be delegated to far more 
accurate Digital Twins, which reflect the reality in great detail 
and accuracy. Digital Twins, thus, are successors of common 
manually designed simulation models, which have a high 
degree of abstraction and, therefore, restricted validity [6]. In 
creating a more realistic environment than regular simulations 
can provide, the identification of more suitable production 
control methods flourishes. Nonetheless, the fact that an up-to-
the minute Digital Twin can provide accurate insight about the 
production system's short- and medium-term behavior is yet to 
be exploited.

3. Foresighted Digital Twin

This section presents the conceptual inclusion of foresight 
into Digital Twins and outlines the effective modeling of 
human behavior within production systems by means of 
reinforcement learning.

3.1. Including foresight for situational control agent selection

Key in evaluating a digital twin is its ability to correctly 
depict any situation taking place in the underlying physical 
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Fig. 2. Foresighted digital twins evaluation for situational production system 
control selection

system [7]. Not until a point in time is portrayed can the 
dynamics of the production system be included. Instead of 
following regular Digital Twin simulation goals of predicting 
long-term system behavior accurately [6], in other words the 
dynamic's outcome, foresighted Digital Twins allow a glimpse 
at the concrete path the dynamics most likely follow. Hence, 
alleviating the gap in short- and medium-term predictions. 
However, current approaches to Digital Twins which include 
foresight are limited to big data predictions of a production 
systems status [16] and machine process predictions [17].

Owing to the ability of changeable and agile production 
systems to reconfigure, to select a fluid level of automation and 
produce inherently different products, individual production 
targets can easily differ among different occasions. Yet, rigid 
production control policies and time-invariant strategies are 
incapable of dealing with such frequent changes. In this case 
any decision making instance within a Digital Twin is modeled 
as an agent, in particular production control. Hence, the 
circumstantial near real-time control agent selection in 
foresighted digital twins can alleviate the effects of such non 
target-aligned production control. In a similar vein, sudden and 
unexpected changes in the production system can induce the 
necessity to adapt to more suitable production control policies.

Including foresight and path evaluation itself is by no means a 
novel concept as it is at the heart of Monte Carlo methods. 
Instead of following random roll-outs to determine system 
behavior [18, 19] or creating an asymmetric, diverging tree as 
in MCTS [20], the foresighted Digital Twin enables a more 
targeted control policy search. Hence, given the ability of a 
foresighted Digital Twin to accurately reflect the influence of 
different control strategies on the systems development, their 
near real-time comparison becomes meaningful for accurate 
system predictions and agent selection as shown in Figure 2. In 
a similar vein to Monte Carlo methods, the core of situational 
control agent selection in Digital Twins is the instantiation of 
several Digital Twins based on up-to-the minute information 
each with a different control strategies running in parallel. In 
contrast to current Digital Twin developments, however, the 
evaluation is based on the current situation, the systems 
development path and final status. As a result the control 
strategy most suitable to current circumstances can be selected.

Fig. 3. Categorization of triggers starting foresight instantiation

Moreover, the concept of triggering foresight and selecting new 
control policies can be separated into subcategories. Most 
importantly, the instantiation of foresighted Digital Twins can 
be activated by events, time-based triggers or performance 
evaluation triggers as visualized in Figure 3. The former can be 
disaggregated into external events, such as changes in product 
mix, internal events, such as failures or maintenance, reaching 
particular situations or defined status of the system as well as 
metrics defined on changes between two consecutive system 
statuses. Performance-based triggers can set off the comparison 
of control policies in order to sustain certain performance levels 
or react to a change in production targets. Moreover, the 
evaluation and selection of control policies can be based on 
path, result, system and human evaluations. However, in this 
paper not the full extent of control policy switching modalities 
and foresighted Digital Twins is explored.

3.2. Modeling Human Behavior through Reinforcement 
Learning

The influence of human behavior and human resource 
management strategies on manufacturing performance is 
widely accepted [21]. In particular high control and 
commitment strategies increase workers performance [21]
which is increased with the ability of individuals to simulate 
others' decisions [22]. While the latter has been studied using 
reinforcement learning [22, 23], human behavior in general can 
effectively be modeled through Markov models [24] or in a 
more modern approach with reinforcement learning [25].
Despite the inability of reinforcement learning to perfectly 
match the human learning process [25] its application provides 
an alternative to system dynamics modeling of human behavior 
[26] which can be used for goal-oriented human control tasks. 
Its ability to successfully control production systems [27] and 
maintenance [28] has been shown.

In accordance to [29] ⟨𝑆𝑆𝑆𝑆,𝐴𝐴𝐴𝐴,𝑃𝑃𝑃𝑃, 𝑟𝑟𝑟𝑟⟩ represents a standard Markov 
Decision Process (MDP) where 𝑆𝑆𝑆𝑆 represents the state space, 𝐴𝐴𝐴𝐴
the action space, 𝑃𝑃𝑃𝑃 the stochastic transition function 𝑝𝑝𝑝𝑝(𝑠𝑠𝑠𝑠′|𝑠𝑠𝑠𝑠, 𝑎𝑎𝑎𝑎)
and 𝑟𝑟𝑟𝑟(𝑠𝑠𝑠𝑠, 𝑎𝑎𝑎𝑎) the reward function defining the reward for action 
𝑎𝑎𝑎𝑎 in state 𝑠𝑠𝑠𝑠 [29]. Based on individual goals, such as the drive 
to finish early, deliver high quality and take breaks, the reward 
function can be individualized to accurately reflect the 
behavior of individuals. An individualized policy 𝜋𝜋𝜋𝜋 is used to 
select an action according to 𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡~𝜋𝜋𝜋𝜋(∙ |𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡) , depending on 
experience tuples(𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 , 𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡 , 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 , 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡+1).
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path, result, system and human evaluations. However, in this 
paper not the full extent of control policy switching modalities 
and foresighted Digital Twins is explored.

3.2. Modeling Human Behavior through Reinforcement 
Learning

The influence of human behavior and human resource 
management strategies on manufacturing performance is 
widely accepted [21]. In particular high control and 
commitment strategies increase workers performance [21]
which is increased with the ability of individuals to simulate 
others' decisions [22]. While the latter has been studied using 
reinforcement learning [22, 23], human behavior in general can 
effectively be modeled through Markov models [24] or in a 
more modern approach with reinforcement learning [25].
Despite the inability of reinforcement learning to perfectly 
match the human learning process [25] its application provides 
an alternative to system dynamics modeling of human behavior 
[26] which can be used for goal-oriented human control tasks. 
Its ability to successfully control production systems [27] and 
maintenance [28] has been shown.

In accordance to [29] ⟨𝑆𝑆𝑆𝑆,𝐴𝐴𝐴𝐴,𝑃𝑃𝑃𝑃, 𝑟𝑟𝑟𝑟⟩ represents a standard Markov 
Decision Process (MDP) where 𝑆𝑆𝑆𝑆 represents the state space, 𝐴𝐴𝐴𝐴
the action space, 𝑃𝑃𝑃𝑃 the stochastic transition function 𝑝𝑝𝑝𝑝(𝑠𝑠𝑠𝑠′|𝑠𝑠𝑠𝑠, 𝑎𝑎𝑎𝑎)
and 𝑟𝑟𝑟𝑟(𝑠𝑠𝑠𝑠, 𝑎𝑎𝑎𝑎) the reward function defining the reward for action 
𝑎𝑎𝑎𝑎 in state 𝑠𝑠𝑠𝑠 [29]. Based on individual goals, such as the drive 
to finish early, deliver high quality and take breaks, the reward 
function can be individualized to accurately reflect the 
behavior of individuals. An individualized policy 𝜋𝜋𝜋𝜋 is used to 
select an action according to 𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡~𝜋𝜋𝜋𝜋(∙ |𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡) , depending on 
experience tuples(𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 , 𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡 , 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 , 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡+1).
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4. Case study: exemplary job-shop

This section presents the case study for the application of 
agent selection in foresighted Digital Twins based on a 
simplified exemplary job-shop.

4.1. Human Behavior job-shop use-case

The regarded use-case consists of a matrix shaped layout 
with 2 × 3 production cells. This matrix production system is 
controlled by three Automated Guided Vehicles (AGV) and a 
human supervisor who occasionally engages in transport 
operations, as shown in Figure 4.

Human behavior is approximated through a Trust Region 
Policy Optimization (TRPO) reinforcement learner [30] and a 
weighted reward function including covered distance and 
system performance. The exact weight is adjusted to 
correspond to human behavior manually, yet with meaningful 
and sufficient data an automated approach can be realized 
through learning from demonstration. Within this simplified 
control setting for Digital Twins with foresight, the following 
exemplary order dispatching production control methods are 
implemented: First-In-First-Out Heuristics (FIFO), Shortest 
Queue heuristic (SQ), Nearest-Job-First (NJF) a parametrized 
Composite Rule including distance, queue length and first-in 
with equal weights (CR) and a reinforcement learning policy 
(RL). This use-case uses a combination of weighted Key 
Performance Indicators (KPI) value and timely pareto-
comparison of control strategies for final control strategy 
selection which is performed through a human production 
manager.

Fig. 4. The regarded job-shop based matrix production system use-case

4.2. Analysis and Results

Based on the performance realized by each policy within the 
foresighted Digital Twins, their detriments and merits can be 
assessed. In this case the comparison is based on the systems 
throughput, average waiting time per finished order and AGV 
utilization. The individual performance over time and averages 
are reported exemplarily in Figure 5: A sudden failure of M2 
in the given exemplary job-shop triggers the comparison by 
means of foresighted Digital Twins at time 0 leading to 
increasing waiting times throughout the period.

In contrast to findings for comparable job-shops and control 
through different heuristics and reinforcement learners as in [4,
27], the FIFO heuristic does not minimize the average waiting 
time in this time-frame. In order to control this production 
system meaningfully within the foresight period one would 
choose SQ realizing high throughput and short waiting times. 
In addition, preference-based selection can take the entire run 
of the KPI curves into account, i.e. consider CR for improved 
throughput and only few waiting time derivations. Thus, the 
superiority of situational agent selection instead of long-term 

Fig. 5. Comparison of different production control methods and their performances in foresighted digital twins

M.C. May et al. / Procedia CIRP 00 (2020) 000–000

optimization of production systems can be shown, as the finally 
selected control strategy (SQ) is dominated by other control 
strategies for regular operation (see Figure 5 bottom right). The 
quest in production control, hence, shifts from finding the best 
control strategy towards selecting the best control strategy for 
each situation. No control policy is continuously dominating all 
others in the sense that it is performing better at each point in
time. Therefore, a situational control adaption to the currently 
best suited policy will outperform any pure policy. In other 
words, according to the “no-free-lunch theorem'' no universal 
optimization strategy outperforms strategies that specialize in 
particular problems [31] and circumstantial agent selection 
chooses the most suitable at a given time.

In general, throughout the analysis the high influence of 
current circumstances on different performance KPIs becomes 
apparent. As learning techniques are hardly capable of dealing 
with completely unknown situations, production control 
selection in foresighted Digital Twins can bridge the time gap 
arising while learning optimized control policies. Despite the 
ability to generalize the tremendous changeability of smart 
manufacturing production systems makes exploring all 
possible states and generalization infeasibly complex.

5. Discussion and Outlook

In a nutshell, this paper introduces and applies a novel 
concept, foresighted Digital Twins, in order to assess the 
influence of different production control policies on system 
performance and behavior in near real-time and select the most 
suitable strategy for the situation at hand. By modeling human 
behavior through a reinforcement learner the unpredictability
of human behavior is anticipated. The application to a job-shop 
shows the ability of foresighted Digital Twins to select suitable 
control strategies. However, the inclusion of final state 
evaluation remains to be analyzed and can increase the 
concept's applicability. In order to improve the benefits of 
foresighted Digital Twins the inclusion of further policies and 
their validation in a real-world application is advisable. 

Most promising for further research is the in-depth analysis 
of different foresight triggers and the comprehensive 
evaluation of control policy switching modalities. The latter as 
well as a breakdown of circumstantial features and selected 
policies can generate new insights about the regarded 
production systems. Further research could apply foresighted 
Digital Twins to different near real-time control problems.
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4. Case study: exemplary job-shop

This section presents the case study for the application of 
agent selection in foresighted Digital Twins based on a 
simplified exemplary job-shop.

4.1. Human Behavior job-shop use-case

The regarded use-case consists of a matrix shaped layout 
with 2 × 3 production cells. This matrix production system is 
controlled by three Automated Guided Vehicles (AGV) and a 
human supervisor who occasionally engages in transport 
operations, as shown in Figure 4.

Human behavior is approximated through a Trust Region 
Policy Optimization (TRPO) reinforcement learner [30] and a 
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and sufficient data an automated approach can be realized 
through learning from demonstration. Within this simplified 
control setting for Digital Twins with foresight, the following 
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implemented: First-In-First-Out Heuristics (FIFO), Shortest 
Queue heuristic (SQ), Nearest-Job-First (NJF) a parametrized 
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with equal weights (CR) and a reinforcement learning policy 
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choose SQ realizing high throughput and short waiting times. 
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throughput and only few waiting time derivations. Thus, the 
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optimization of production systems can be shown, as the finally 
selected control strategy (SQ) is dominated by other control 
strategies for regular operation (see Figure 5 bottom right). The 
quest in production control, hence, shifts from finding the best 
control strategy towards selecting the best control strategy for 
each situation. No control policy is continuously dominating all 
others in the sense that it is performing better at each point in
time. Therefore, a situational control adaption to the currently 
best suited policy will outperform any pure policy. In other 
words, according to the “no-free-lunch theorem'' no universal 
optimization strategy outperforms strategies that specialize in 
particular problems [31] and circumstantial agent selection 
chooses the most suitable at a given time.

In general, throughout the analysis the high influence of 
current circumstances on different performance KPIs becomes 
apparent. As learning techniques are hardly capable of dealing 
with completely unknown situations, production control 
selection in foresighted Digital Twins can bridge the time gap 
arising while learning optimized control policies. Despite the 
ability to generalize the tremendous changeability of smart 
manufacturing production systems makes exploring all 
possible states and generalization infeasibly complex.

5. Discussion and Outlook

In a nutshell, this paper introduces and applies a novel 
concept, foresighted Digital Twins, in order to assess the 
influence of different production control policies on system 
performance and behavior in near real-time and select the most 
suitable strategy for the situation at hand. By modeling human 
behavior through a reinforcement learner the unpredictability
of human behavior is anticipated. The application to a job-shop 
shows the ability of foresighted Digital Twins to select suitable 
control strategies. However, the inclusion of final state 
evaluation remains to be analyzed and can increase the 
concept's applicability. In order to improve the benefits of 
foresighted Digital Twins the inclusion of further policies and 
their validation in a real-world application is advisable. 

Most promising for further research is the in-depth analysis 
of different foresight triggers and the comprehensive 
evaluation of control policy switching modalities. The latter as 
well as a breakdown of circumstantial features and selected 
policies can generate new insights about the regarded 
production systems. Further research could apply foresighted 
Digital Twins to different near real-time control problems.
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