27 research outputs found

    Evolutionary History of Helicobacter pylori Sequences Reflect Past Human Migrations in Southeast Asia

    Get PDF
    The human population history in Southeast Asia was shaped by numerous migrations and population expansions. Their reconstruction based on archaeological, linguistic or human genetic data is often hampered by the limited number of informative polymorphisms in classical human genetic markers, such as the hypervariable regions of the mitochondrial DNA. Here, we analyse housekeeping gene sequences of the human stomach bacterium Helicobacter pylori from various countries in Southeast Asia and we provide evidence that H. pylori accompanied at least three ancient human migrations into this area: i) a migration from India introducing hpEurope bacteria into Thailand, Cambodia and Malaysia; ii) a migration of the ancestors of Austro-Asiatic speaking people into Vietnam and Cambodia carrying hspEAsia bacteria; and iii) a migration of the ancestors of the Thai people from Southern China into Thailand carrying H. pylori of population hpAsia2. Moreover, the H. pylori sequences reflect iv) the migrations of Chinese to Thailand and Malaysia within the last 200 years spreading hspEasia strains, and v) migrations of Indians to Malaysia within the last 200 years distributing both hpAsia2 and hpEurope bacteria. The distribution of the bacterial populations seems to strongly influence the incidence of gastric cancer as countries with predominantly hspEAsia isolates exhibit a high incidence of gastric cancer while the incidence is low in countries with a high proportion of hpAsia2 or hpEurope strains. In the future, the host range expansion of hpEurope strains among Asian populations, combined with human motility, may have a significant impact on gastric cancer incidence in Asia

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Detection and Grading of Radiographic Hand Osteoarthritis Using an Automated Machine Learning Platform.

    No full text
    Automated machine learning (autoML) platforms allow health care professionals to play an active role in the development of machine learning (ML) algorithms according to scientific or clinical needs. The aim of this study was to develop and evaluate such a model for automated detection and grading of distal hand osteoarthritis (OA). A total of 13,690 hand radiographs from 2,863 patients within the Swiss Cohort of Quality Management (SCQM) and an external control data set of 346 non-SCQM patients were collected and scored for distal interphalangeal OA (DIP-OA) using the modified Kellgren/Lawrence (K/L) score. Giotto (Learn to Forecast [L2F]) was used as an autoML platform for training two convolutional neural networks for DIP joint extraction and subsequent classification according to the K/L scores. A total of 48,892 DIP joints were extracted and then used to train the classification model. Heatmaps were generated independently of the platform. User experience of a web application as a provisional user interface was investigated by rheumatologists and radiologists. The sensitivity and specificity of this model for detecting DIP-OA were 79% and 86%, respectively. The accuracy for grading the correct K/L score was 75%, with a κ score of 0.76. The accuracy per DIP-OA class differed, with 86% for no OA (defined as K/L scores 0 and 1), 71% for a K/L score of 2, 46% for a K/L score of 3, and 67% for a K/L score of 4. Similar values were obtained in an independent external test set. Qualitative and quantitative user experience testing of the web application revealed a moderate to high demand for automated DIP-OA scoring among rheumatologists. Conversely, radiologists expressed a low demand, except for the use of heatmaps. AutoML platforms are an opportunity to develop clinical end-to-end ML algorithms. Here, automated radiographic DIP-OA detection is both feasible and usable, whereas grading among individual K/L scores (eg, for clinical trials) remains challenging

    Software Engineering for Mobility: Reflecting on the Past, Peering into the Future

    No full text
    At the end of the second millennium, mobility was a hot research topic. Physical mobility of devices was becoming commonplace with the availability of cheap wireless cards, the first attempts to transform phones into personal do-it-all devices were beginning to appear, and mobile ad hoc networks were attracting a huge interest from many research communities. Logical mobility of code was still going strong as a design option for distributed systems, with the Java language providing some of the ready-to-use building blocks. In 2000, when we put forth a research “roadmap ” for software engineering for mobility, the challenges posed by this dynamic scenario were many. A decade and a half later, many things have changed. Mobility is no longer exotic: we juggle multiple personal devices every day while on the move, plus we grab and update applications on a whim from virtual stores. Indeed, some trends and visions we considered in our original paper materialized, while others faded, disappeared, or morphed into something else. Moreover, some players unexpected at the time (e.g., cloud computing and online social networks) appeared on the scene as game changers. In this paper we revisit critically our original vision, reflecting on the past and peering into the future of the lively and exciting research area of mobility. Further, we ask ourselves to what extent the software engineering community is still interested in taking up the challenges mobility bears

    Development of sensors, probes and imaging techniques for pollutant monitoring in geo-environmental model tests

    No full text
    In order to be able to track the movement of pollutant plumes during geotechnical centrifuge and other geo-en-vironmental experiments, a number of techniques have been investigated: fibre-optic photometric sensors, resistivity probes, resistivity tomography, and copper ion-selective electrodes. Methods of image analysis, signal processing techniques and multi-spectral image analysis were also explored and applied to images of moving plumes. In addition, an optical technique for detecting NAPL by cone probe was investigated. Their relative merits are discuseed. This work was conducted as part of an EU-funded network programme: NECER (Network of European geotechnical Centrifuges for Environmental Research), and this paper summarises the conclusions of the sensors and imaging working group
    corecore