6 research outputs found

    Reference genome and comparative genome analysis for the WHO reference strain for Mycobacterium bovis BCG Danish, the present tuberculosis vaccine

    Get PDF
    Background: Mycobacterium bovis bacillus Calmette-Guerin (M. bovis BCG) is the only vaccine available against tuberculosis (TB). In an effort to standardize the vaccine production, three substrains, i.e. BCG Danish 1331, Tokyo 172-1 and Russia BCG-1 were established as the WHO reference strains. Both for BCG Tokyo 172-1 as Russia BCG-1, reference genomes exist, not for BCG Danish. In this study, we set out to determine the completely assembled genome sequence for BCG Danish and to establish a workflow for genome characterization of engineering-derived vaccine candidate strains.ResultsBy combining second (Illumina) and third (PacBio) generation sequencing in an integrated genome analysis workflow for BCG, we could construct the completely assembled genome sequence of BCG Danish 1331 (07/270) (and an engineered derivative that is studied as an improved vaccine candidate, a SapM KO), including the resolution of the analytically challenging long duplication regions. We report the presence of a DU1-like duplication in BCG Danish 1331, while this tandem duplication was previously thought to be exclusively restricted to BCG Pasteur. Furthermore, comparative genome analyses of publicly available data for BCG substrains showed the absence of a DU1 in certain BCG Pasteur substrains and the presence of a DU1-like duplication in some BCG China substrains. By integrating publicly available data, we provide an update to the genome features of the commonly used BCG strains. Conclusions: We demonstrate how this analysis workflow enables the resolution of genome duplications and of the genome of engineered derivatives of the BCG Danish vaccine strain. The BCG Danish WHO reference genome will serve as a reference for future engineered strains and the established workflow can be used to enhance BCG vaccine standardization

    Whole genome resequencing and complementation tests reveal candidate loci contributing to bacterial wilt (Ralstonia sp.) resistance in tomato

    No full text
    International audienceAbstract Tomato ( Solanum lycopersicum ) is one of the most economically important vegetable crops worldwide. Bacterial wilt (BW), caused by the Ralstonia solanacearum species complex, has been reported as the second most important plant pathogenic bacteria worldwide, and likely the most destructive. Extensive research has identified two major loci, Bwr-6 and Bwr-12 , that contribute to resistance to BW in tomato; however, these loci do not completely explain resistance. Segregation of resistance in two populations that were homozygous dominant or heterozygous for all Bwr-6 and Bwr-12 associated molecular markers suggested the action of one or two resistance loci in addition to these two major QTLs. We utilized whole genome sequence data analysis and pairwise comparison of six BW resistant and nine BW susceptible tomato lines to identify candidate genes that, in addition to Bwr-6 and Bwr-12, contributed to resistance. Through this approach we found 27,046 SNPs and 5975 indels specific to the six resistant lines, affecting 385 genes. One sequence variant on chromosome 3 captured by marker Bwr3.2dCAPS located in the Asc ( Solyc03g114600.4.1 ) gene had significant association with resistance, but it did not completely explain the resistance phenotype. The SNP associated with Bwr3.2dCAPS was located within the resistance gene Asc which was inside the previously identified Bwr-3 locus. This study provides a foundation for further investigations into new loci distributed throughout the tomato genome that could contribute to BW resistance and into the role of resistance genes that may act against multiple pathogens

    Different Modulating Effects of Adenosine on Neonatal and Adult Polymorphonuclear Leukocytes

    Get PDF
    Polymorphonuclear leukocytes (PMNs) are the major leukocytes in the circulation and play an important role in host defense. Intact PMN functions include adhesion, migration, phagocytosis, and reactive oxygen species (ROS) release. It has been known for a long time that adenosine can function as a modulator of adult PMN functions. Neonatal plasma has a higher adenosine level than that of adults; however, little is known about the modulating effects of adenosine on neonatal PMNs. The aim of this study was to investigate the effects of adenosine on neonatal PMN functions. We found that neonatal PMNs had impaired adhesion, chemotaxis, and ROS production abilities, but not phagocytosis compared to adult PMNs. As with adult PMNs, adenosine could suppress the CD11b expressions of neonatal PMNs, but had no significant suppressive effect on phagocytosis. In contrast to adult PMNs, adenosine did not significantly suppress chemotaxis and ROS production of neonatal PMNs. This may be due to impaired phagocyte reactions and a poor neonatal PMN response to adenosine. Adenosine may not be a good strategy for the treatment of neonatal sepsis because of impaired phagocyte reactions and poor response

    The role of host eIF2α in viral infection

    No full text
    corecore