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Abstract

Background: Mycobacterium bovis bacillus Calmette-Guérin (M. bovis BCG) is the only vaccine available against
tuberculosis (TB). In an effort to standardize the vaccine production, three substrains, i.e. BCG Danish 1331, Tokyo
172–1 and Russia BCG-1 were established as the WHO reference strains. Both for BCG Tokyo 172–1 as Russia BCG-1,
reference genomes exist, not for BCG Danish. In this study, we set out to determine the completely assembled
genome sequence for BCG Danish and to establish a workflow for genome characterization of engineering-derived
vaccine candidate strains.

Results: By combining second (Illumina) and third (PacBio) generation sequencing in an integrated genome
analysis workflow for BCG, we could construct the completely assembled genome sequence of BCG Danish 1331
(07/270) (and an engineered derivative that is studied as an improved vaccine candidate, a SapM KO), including the
resolution of the analytically challenging long duplication regions. We report the presence of a DU1-like duplication
in BCG Danish 1331, while this tandem duplication was previously thought to be exclusively restricted to BCG
Pasteur. Furthermore, comparative genome analyses of publicly available data for BCG substrains showed the
absence of a DU1 in certain BCG Pasteur substrains and the presence of a DU1-like duplication in some BCG China
substrains. By integrating publicly available data, we provide an update to the genome features of the commonly
used BCG strains.

Conclusions: We demonstrate how this analysis workflow enables the resolution of genome duplications and of
the genome of engineered derivatives of the BCG Danish vaccine strain. The BCG Danish WHO reference genome
will serve as a reference for future engineered strains and the established workflow can be used to enhance BCG
vaccine standardization.
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differences, Tandem duplications
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Background
The BCG live attenuated TB vaccine is one of the oldest
and most widely used vaccines in human medicine. Each
year, BCG vaccines are administered to over 100 million
newborns (i.e. 75% of all newborns on the planet). The
original BCG strain was developed at the Pasteur Insti-
tute, through attenuation of the bovine TB pathogen M.
bovis, by 231 serial passages on potato slices soaked in
glycerol-ox bile over a time-span of 13 years [1]. After its
release for use in 1921, this BCG Pasteur strain was dis-
tributed to laboratories around the world and different
laboratories maintained their own daughter strains by
passaging. Over the years, different substrains arose with
different protective efficacy [2, 3]. The establishment of
a frozen seed-lot system in 1956 and the WHO (World
Health Organization) recommendation of 1966 that
vaccines should not be prepared from cultures that had
undergone > 12 passages starting from a defined freeze-
dried seed lot, halted the accumulation of additional
genetic changes [1]. In an effort to further standardize
the vaccine production and to prevent severe adverse
reactions related to BCG vaccination, three substrains,
i.e. BCG Danish 1331, Tokyo 172–1 and Russia BCG-1
were established as the WHO reference strains in 2009
and 2010 [4]. Of these, the BCG Danish 1331 strain is
the most frequently used one, and it also serves as a
basis of most current 'next-generation' engineering
efforts to improve the BCG vaccine or to use it as a 'car-
rier' for antigens of other pathogens [5, 6].
Complete genome elucidation of BCG strains is

challenging by the occurrence of large genome segment
duplications and a high GC content (65%). Therefore,
no fully assembled reference genome is yet available for
BCG Danish, only incomplete ones [7, 8], which hinders
further standardization efforts. In this study, we set out
to determine the completely assembled genome sequence
for BCG Danish and meanwhile, to establish a current-
generation sequencing-based workflow to analyze ge-
nomes of BCG Danish-derived engineered strains.

Results
General genomic features of the whole genome sequence
for BCG Danish 1331 (07/270)
The BCG Danish 1331 (07/270) strain genome sequence
was assembled by combining second (Illumina) and
third (PacBio) generation sequencing technologies in an
integrated bioinformatics workflow (Fig. 1, see Methods)
. Ambiguous regions were locally reassembled and/or
experimentally verified (Additional file 1: Table S1). In
all cases, the experimental validation confirmed the
assembly, demonstrating that this integration of sequen-
cing data types and bioinformatics workflow is adequate
for high-GC mycobacterial genomes. The single circular
chromosome is 4,411,814 bp in length and encodes 4084

genes, including 4004 genes encoding for proteins, 3
genes for rRNA (5S, 16S and 23S), 45 genes for tRNA, 1
tmRNA gene (ssrA), 1 ncRNA gene (rnpB) and 30 pseu-
dogenes (Fig. 2a). Compared to the reference genome
sequence of BCG Pasteur 1173P2, 42 SNPs were identi-
fied, including 24 non-synonymous SNPs, 9 synonymous
SNPs and 9 SNPs in the intergenic region (Additional
file 1: Table S2). For all the genes containing missense
and/or nonsense SNPs, we attempted to validate the
SNPs via PCR and Sanger sequencing (26 SNPs affecting
19 genes) (Additional file 1: Table S3). In all cases where
the validation experiment yielded interpretable quality
results (i.e. not hindered by highly repetitive and/or
highly GC-rich regions), these mutations were all vali-
dated (15 SNPs affecting 15 genes), demonstrating that
the generated genome has very high per-base accuracy.
Genetic features determinative for the BCG Danish sub-
strain, as described by Abdallah et al. [8], were identified,
including the region of difference (RD) Denmark/Glaxo
and the DU2 type III, that was completely resolved in
the assembly (Fig. 2a-b). Additionally, a 1 bp deletion in
Mb3865 and a 465 bp insertion in PE_PGRS54 com-
pared to BCG Pasteur were found. The organization of 2
repeats (A and B) in PE_PGRS54 has been reported to
differ between the BCG strains [9]. We report a A-A-B-
B-B-B organization for BCG Danish in contrast to BCG
Tokyo (A-A-B-B-B) and BCG Pasteur (A-B-B-B-B).
Previously, two separate genetic populations for BCG
Danish 1331 have been described, which differ in the
SenX3-RegX3 region (having 2 or 3 repeats of 77 bp)
[10]. For BCG Danish 1331 07/270, we documented only
3 repeats of 77 bp (Additional file 1: Figure S1). Two fea-
tures described by Abdallah et al. [8] to be determinative
for BCG Danish were not identified, namely the re-
arrangement of the fadD26-pssA gene region and a 894
bp deletion in Mb0096c-Mb0098c. In addition, a 399 bp
instead of a 118 bp insertion was detected in leuA, giving
12 direct repeats of 57 bp, as in the Pasteur strain (previ-
ously denoted as S-RD13 [11]). These three regions were
characterized by the presence of inherent repeat struc-
tures. Furthermore, these genome regions contained as-
sembly gaps in the assembly for BCG Danish published
with the study of Abdallah et al. [8, 12], so it is likely
that our long-read based genome is more accurate in
these challenging regions.

The DU1 in BCG strains
Two large tandem chromosomal duplications characterize
the BCG strains; the DU2 and DU1. While four different
forms of the DU2 exist, the DU1 is supposed to be exclu-
sively present in BCG Pasteur [11, 13, 14]; it spans the
chromosomal origin of replication or oriC (dnaA-dnaN
region) and encodes key components of the replication
initiation and cell division machinery. Surprisingly, we
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detected a DU1-like duplication of 14,577 bp in BCG Da-
nish (Fig. 2). This finding was validated by performing a
copy-number analysis of genes in and surrounding the
DU1-like duplication (Fig. 2d). To adapt an unambiguous
terminology, we considered all duplications spanning the
oriC as DU1, while specifying the strain in which the
duplication was found. Investigation of other publicly
available data for BCG Danish did not show presence of a
DU1 (Figs. 2c and 3), indicating that only the Danish 1331
substrain deposited as the WHO reference at the National
Institute for Biological Standards and Control (NIBSC)
contains this duplication. Additional inconsistencies in

DU1 presence/absence were detected by reanalyzing
publicly available data [12, 15–20] (Figs. 2c and 3): in
contrast to what is concluded in the literature, we
found that the public data show that there are BCG
Pasteur substrains with a DU1 (data [15]) and others
without a DU1 (data [12, 20]). Similarly, experimental
analysis of our in-house Pasteur strains (1721, 1173
ATCC 35734) showed absence of a DU1 (Fig. 2d). Add-
itionally, a DU1-China was detected in some data
sources [15, 16], but not in others [12], which is likely
explained by the use of two different substrains of BCG
that are both named BCG China [8]. DU1-Birkhaug

Fig. 1 Genome analysis pipeline
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was consistently detected in all reported sequencing
data of that BCG strain.

Characterization of a derivative of BCG Danish 1331, the
sapM KO
Using the same genome analysis methodology, we de-
termined the complete genome assembly for a KO
mutant in the SapM secreted acid phosphatase. Since
the sapM gene is located in the DU2, the sapM locus
is present twice in WT cells. The assembly for the

sapM KO strain did not contain a DU2 repeat, as the
KO engineering entirely out-recombined one of the
copies of the DU2 to form a single sapM KO locus
(Fig. 4a). The absence of the DU2 was unequivocally
validated by performing a copy-number analysis of
multiple genes in and surrounding the DU2 (Fig. 4b).
Furthermore, we detected one SNP compared to the
parental BCG Danish WT strain, a missense SNP in
BCG_3966 or BCGDan_4053 (encoding a conserved
hypothetical protein), which was validated by Sanger

Fig. 2 Organization of the BCG Danish 1331 (07/270) genome, focusing on the DU1 and DU2. a Circular representation of the BCG Danish
chromosome. The scale is shown in megabases on the outer black circle. Moving inward, the next two circles show forward (dark blue) and
reverse (yellow) strand CDS (coding sequence). The next circle shows 3 rRNAs (5S, 16S and 23S; orange), 45 tRNAs (black), 1 tmRNA (ssrA; green)
and 1 ncRNA (rnpB; dark green3), followed by 42 SNPs (red) detected between BCG Danish and Pasteur. The subsequent circle shows DU2-III
(dark blue), DU1-Danish (purple) and RD (light blue, names of RD in black) that are typical for BCG Danish. The two inner circles represent G + C
content and GC skew. b Organization of the two tandem duplications in BCG Danish and confirmation by PCR. The DU2 is made up by two
repeats (R1 and R2), as well as the DU1-Danish (R3 and R4). Used primer pairs (1–8) to validate their organization are indicated. c Visual
representation of the oriC with position and size of DU1-China, −Danish, −Pasteur and -Birkhaug. The table indicates which substrains have the
DU1. d Copy-number analysis of genes (indicated in grey in subfigure c) in and surrounding the DU1 region for Pasteur 1173 ATCC 35734,
Pasteur 1721 and Danish 1331 NIBSC 07/270. The represented data are averages (± SD) of four technical replicates
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Fig. 3 (See legend on next page.)
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sequencing (Additional file 1: Table S2 and S3). The
single DU2 sapM KO is a useful chassis for further
vaccine engineering, as another target gene for im-
proving BCG vaccine efficacy (sigH ([22]) is novo
haploid in this strain, facilitating its future knockout
to generate a sapM/sigH double knockout.

Discussion
All BCG strains originate from a common ancestor [23],
but since then, they have incorporated many gene dele-
tions and evolved gene amplifications (DU1 and DU2),
that differentiate the different BCG strains from each
other. Several studies on BCG vaccine strains have
mapped these genomic changes using a variety of com-
parative genomic techniques, starting from subtractive
genomic hybridization [24] to whole genome sequencing
[7, 8, 25], enabling the deciphering of a genealogy of the
BCG strains. The study of Abdallah and others used
short-read Illumina sequencing data for 14 of the most
widely used BCG strains in combination with a large-indel
detection pipeline to identify a number of previously
unknown deletions and insertions [8]. Most genetic signa-
tures identified for BCG Danish by that study were also
found in the complete long read/short read hybrid
genome assembly that we generated for BCG Danish
1331. However, some RDs could not be found. We
hypothesize that inherent repeat structures in these re-
gions triggered the undue assignment of these regions as
RD in the short-read Illumina sequencing dataset. Un-
equivocal assembly of repeat-containing sequences, clearly
requires long sequencing reads, as generated for example
by PacBio SMRT sequencing in this study.
In 2001, Bedwell and others identified two sub-

strains admixed in a Copenhagen commercial prepar-
ation of the BCG vaccine (a.k.a. BCG Danish 1331)
[10]. These two genetic populations differed in the
senX3-regX3 region, having 2 or 3 repeats of 77 bp.
We documented only one version for the senX3-regX3
region, with 3 repeats of 77 bp for the BCG Danish
1331 WHO reference reagent strain. In contrast,
Magdalena et al. reported the presence of 2 repeats
for a M. bovis BCG Danish vaccine strain provided by
M. Lagranderie (Institut Pasteur, Paris, France) [26].
These data indicate that different substrains of BCG

Danish are in circulation, and that this region prob-
ably is genetically drifting. Extensive genomic
characterization of the WHO reference reagent for
BCG Danish (as provided by this study) will facilitate
the identity assurance of the genomic integrity of new
lots of the BCG Danish vaccine.
Similarly, we document the presence of a DU1-like

duplication in this WHO reference BCG strain (DU1-
Danish), that has never been reported on before, as the
DU1 was thought to be exclusively restricted to BCG
Pasteur [11, 23]. Furthermore, we showed that not all
BCG Pasteur strains contain the DU1-Pasteur, based on
experimental analysis of in-house Pasteur strains and
based on reanalysis of publicly available sequencing data.
In addition, we detected a DU1-China in one of the two
different substrains of BCG that are both named BCG
China [8]. Seemingly the oriC is prone for duplication,
as DU1-like duplications were observed for BCG Pas-
teur, BCG Birkhaug, BCG China and BCG Danish. The
genealogy of BCG strains is thus further complicated by
the genomic instability of the oriC during in vitro culti-
vation (Fig. 5, Additional file 2: Table S8). A DU1-like
duplication has also been identified in a 'non-vaccine'
strain; in a clinical isolate (3281), identified as BCG, a 7-
kb region that covered six genes and crossed the oriC
was repeated three times [27], further indicating that this
region is prone to (possibly reversible) duplication.
Together, these data underline the importance of the
genomic characterization of the BCG vaccine strains, in-
cluding their dynamic duplications. Furthermore, they
demand for the specification of the exact origin of the
BCG strain(s) used in studies on this vaccine and the
determination of the presence of the RD documented
for that strain. The implementation of copy number
analysis via qPCR as described here, could allow for easy
discrimination whether a certain strain contains a DU1-like
duplication or not, instead of requiring next-generation
sequencing (more expensive) and bioinformatics analyses
(requires expert knowledge).
Until now, no driving factor for the DU1 has been

identified, as the DU1 in BCG Pasteur contains 31 genes
and none of these genes are expected to give an obvious
in vitro growth advantage upon duplication [13]. Per-
haps, this could now be elucidated by examining the

(See figure on previous page.)
Fig. 3 DU1 duplication detection in BCG strains. Tiling array data (a) from Leung et al. 2008 [15] and Illumina sequencing data (b) for BCG Danish
1331 (this study) as well as published genome data from Pan et al. 2011 [16–19], Abdallah et al. 2015 [12] and Festjens et al. 2019 [20] were
reanalyzed for the presence of a DU1 in the region of the oriC. These references were chosen as they contain BCG Danish or BCG Pasteur
genome sequencing data. The graphs in (a) depict the ratio of the reference (M. tb H37Rv) probe intensity (Cy5) divided by the test (BCG strain)
probe intensity as originally presented in Leung et al. 2008 [14]. The graphs in (b) depict the ratio of mean whole genome read coverage divided
by the mean read coverage in 500 bp window size. Detection of a DU1-like duplication in BCG Pasteur 1173P2 [15], Birkhaug [12, 15], Danish
1331 07/270 (this study) [21] and BCG China [15, 16] sequencing data, indicated in grey. No detection of DU1-duplication for other BCG Pasteur
[12, 20], Danish [12, 17] and China [12] sequencing data
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Fig. 4 BCG Danish 1331 sapM KO has lost the DU2 to form the sapM KO locus. a Illustration of the outrecombination of the DU2 duplicated
genomic region in the formation of the BCG Danish 1331 sapM KO from BCG Danish 1331 WT, containing two sapM loci, due to the presence of
the sapM locus in the DU2. b Genomic organization of the sapM region for BCG Danish WT and sapM KO. The organization of the DU2 is
indicated. †: truncated sapM. c Copy-number analysis of selected genes (indicated in grey in subfigure b) in and surrounding the DU2 via qPCR
on gDNA for BCG Danish 1331 WT and sapM KO. The represented data are averages (± SD) of four technical replicates
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gene functions of the genes common to all DU1-like du-
plications. Seven genes are duplicated in all DU1 (DU1-
Pasteur, -Birkhaug, -China and -Danish and the DU1-
like triplication identified in the clinical isolate BCG
3281), namely BCG_3979c, BCG_3980c, rnpA, rpmH,
dnaA, dnaN and recF (Table 1). It remains however dif-
ficult to speculate about the impact of two copies of oriC
(dnaA-dnaN region) on the biology of BCG strains [13].
Bacteria carefully regulate the activity of the initiator
protein DnaA and its interactions with the oriC to as-
sure correct timing of the chromosome duplication [30].
Therefore, one has assumed that multiple copies of the
oriC are deleterious, as they can provoke uncoordinated
replication [13, 31]. It is known that M. smegmatis trans-
formants with two functional DnaA gene copies cannot
be obtained [31], as observed in both B. subtilis [32] and
S. lividans [33]. However, such an inhibitory effect was
not observed when a complete dnaA gene was trans-
formed to M. smegmatis [34], although Salazar and
others questioned whether the construct did not acquire
a point mutation or small deletion that inactivated dnaA
[31]. Until now, no sequence differences were observed

between the different copies of the dnaA-dnaN region,
suggesting that both copies of the origin are functional
in vivo. It has been speculated that BCG 3281 (contain-
ing 3 copies of the dnaA-dnaN region) would likely be
capable of enduring greater gene expression burdens in
replication [27]. Indeed, as DnaA and oriC are so closely
genetically linked, duplication of this genomic region is
not necessarily the same as just increasing the gene copy
number or overexpressing DnaA. It could be envisioned
that selection for rapid growth on rich medium may
favor or tolerate more rapid genomic replication initi-
ation, but also that this selective advantage may collapse
in the face of e.g. nutrient limitation or prolonged sta-
tionary phase cultivation. Possibly this is at the heart of
the observed unpredictable behavior of this genomic
duplication. Confirmation of this hypothesis awaits ex-
perimental confirmation.
To demonstrate how the genome analysis method-

ology, developed in this study, contributes to full
characterization of improved BCG-derived engineered
vaccines, we applied it to a KO for the SapM secreted
acid phosphatase, located in the analytically challenging

Fig. 5 Refined genealogy of BCG vaccine strains. The year when the strain was obtained per geographical location is indicated where possible
(indigo). The scheme shows regions of difference (RD), insertions (Ins), deletions (‘Δ’), indels and tandem duplications (DU), which differentiate the
different BCG strains (Additional file 2: Table S8). The blue dashed squares indicate the different DU2-forms, which classify the BCG strains into
four major lineages. When the DU1 is not found in all substrains of a certain strain, this is indicated on the scheme. According to the literature,
two different substrains of BCG are named BCG China or Beijing [8]. Therefore, the scheme contains two ‘BCG China’ strains: BCG China [8] and
BCG China* [7, 14]. Adapted from references [8, 11, 14, 28, 29]. Concerning reference [8], only the RD and deleted genes that could be verified on
the assembled genomes [12] are included
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long duplication region DU2 [11]. Our BCG genome
analysis workflow unequivocally demonstrated that the
KO engineering had inadvertently out-recombined one
of the copies of this DU2 and had furthermore given rise
to a single SNP. The out-recombination of the DU2 will
most probably not have a dramatic impact on the
phenotype of the sapM KO, as all the genes are still
present as a single copy. One could perhaps expect
slower growth of the sapM KO in glycerol-containing
media, as the DU2 probably arose due to inadvertent
selection for increased growth rate on glycerol [11].
GlpD2, encoding glycerol-3-phosphate dehydrogenase, is
one of the three genes present in all DU2 versions and
higher levels of glpD2 probably gave a growth advantage
to strains with duplications [11]. We did not observe a
decreased growth rate in the Middlebrook 7H9 standard
medium for the sapM KO. Perhaps, the growth advan-
tage attributed to the DU2 would only be apparent in
Calmette’s glycerol-containing medium, traditionally
used to subculture the BCG strains before the introduc-
tion of a frozen seed-lot system in 1956 [37]. The effect
of the SNP in BCG_3966 (or Rv3909) is hard to esti-
mate. The mutated gene encodes for a conserved hypo-
thetical protein of 802 amino acids and is predicted to
be an outer membrane protein [38]. The missense SNP
converts the asparagine (located at the end of the

protein) in the WT to a threonine in the sapM KO
(pAsn737Thr). However, as the gene has been found to
be essential for in vitro growth of M. tb H37Rv [39, 40],
we suspect that the protein function is retained. Such
unexpected genomic alterations may be more common
than thought in engineered live attenuated TB vaccines,
but may have so far gone largely unnoticed due to lack
of a complete reference genome and/or suitable genome
analysis methodology.
The implementation of both short (Illumina) and long

(PacBio) sequencing reads in one genome analysis meth-
odology allowed for the straightforward generation of
completely assembled genomes of BCG strains. These
included the decomposition of the analytically challen-
ging long duplication regions DU1 and DU2, thanks to
the inclusion of long sequencing reads, whereas one
formerly needed many additional experimentation
(Table 2). Furthermore, the generated genome assem-
blies were highly polished at base level, due to the in-
corporation of reliable Illumina sequencing reads
(single-pass error rate of 0.1%), in addition to the more
error-prone PacBio sequencing reads (single-pass error
rate of 10–15%) [41, 42]. This methodology is thus cur-
rently the most cost-effective strategy that allows to cre-
ate high-quality BCG genomes, solely based on next-
generation sequencing strategies.

Table 1 Genes (and genome feature) common to all DU1-like duplications (DU1-Pasteur, -Birhaug, -China and -Danish and the DU1-
like triplication identified in the clinical isolate BCG 3281)

Gene/feature M. tb
H37Rv (BCG Pasteur)

Product/Function Functional category

Rv3921c (BCG3979c) Probable conserved transmembrane protein cell wall and cell processes

Rv3922c (BCG3980c) Possible hemolysin virulence, detoxification,
adaptation

rnpA Ribonuclease P protein component RnpA or RNaseP. RNaseP catalyzes the removal
of the 5′-leader sequence from PRE-tRNA to produce the mature 5′ terminus. It can
also cleave other RNA substrates such as 4.5S RNA. The protein component plays
an auxiliary but essential role in vivo by binding to the 5′-leader sequence
and broadening the substrate specificity of the ribozyme.

information pathways

rpmH 50S ribosomal protein L34 RpmH. Involved in translation mechanism. This protein
is one of the early assembly proteins of the 50S ribosomal subunit.

information pathways

dnaA Chromosomal replication initiator protein DnaA. Plays an important role in the initiation
and regulation of chromosomal replication. Binds to the oriC; it binds specifically dsDNA
at a 9 bp consensus (DnaA box): 5′-TTATC(C/A)A(C/A)A-3′. DnaA binds the oriC,
ATP and ADP,acidic phospholipids and exhibited weak ATPase activity.

information pathways

oriC Sequence in the genome at which replication is initiated. Contains non-overlapping
MtrA- and DnaA-binding boxes. Is located in the dnaA-dnaN genomic region [35].

–

dnaN DNA polymerase III (β-chain) DnaN (DNA nucleotidyltransferase). DNA polymerase III
is a complex, multichain enzyme responsible for most of the replicative synthesis
in bacteria. This DNA polymerase also exhibits 3′ to 5′ exonuclease activity. The β-chain
is required for initiation of replication. Once it is clamped onto DNA, it slides freely
(bidirectionally and ATP-independently) along duplex DNA.

information pathways

recF DNA replication and repair protein RecF (ssDNA binding protein) is involved in DNA
metabolism and recombination; it is required for DNA replication and normal SOS
inducibility. Binds preferentially to linear ssDNA. It also seems to bind ATP.

information pathways

Gene information was extracted from Mycobrowser [36]
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Conclusions
Our data highlight the importance of characterizing our
BCG vaccine strains, as more variability exists among
these strains than was thought. The availability of the
complete reference genome for BCG Danish 1331 as
well as the associated genome analysis workflow, now
permits full genomic characterization of (engineered) TB
vaccine strains, which should contribute to more
consistent manufacturing of this highly cost-effective
vaccine that protects the world’s newborns from dissem-
inated TB, and that is used as a basic chassis for im-
proved TB vaccine design.

Methods
Mycobacterial strains, gDNA and reference genomes
The strains used include the M. bovis BCG Danish 1331
sub-strain (1st WHO Reference Reagent, 07/270, Na-
tional Institute for Biological Standards and Control
(NIBSC), Hertfordshire), the BCG Pasteur 1173 strain
(ATCC®35734™, ATCC, Manassas), the streptomycin-
resistant BCG Pasteur 1721 strain [49] (RpsL: K43R; a
gift of Dr. P. Sander, Institute for Medical Microbiology,
Zürich). From the Danish 1331 strain, a sapM knockout
(KO) strain was constructed (detailed procedure of the
strain construction can be found in Additional file 1:

Methods). Strains were grown in Middlebrook 7H9
broth (Difco) supplemented with 0.05% Tween-80 and
Middlebrook OADC (Becton Dickinson). Preparation of
genomic DNA (gDNA) from mycobacterial strains was
performed as previously described [50]. As reference
genomes, M. tb H37Rv (NC_000962.3 [51]), M. bovis
AF2122_97 (NC_002945.4 [52]) and BCG Pasteur
1173P2 (NC_008769.1 [53]) were used.

Whole genome sequencing of BCG Danish 1331 WT and
sapM KO strain
For PacBio SMRT sequencing, the gDNA was sheared
using a Megaruptor device (large hydropore, Megarup-
tor, Diagenode, shearing size 35 kb), used for PacBio
SMRT library preparation (SMRTbell Temp Prep Kit
1.0, Pacific Biosciences). Size selection was done on a
BluePippin device (0.75% DF marker S1 high-pass 15-20
kb, Sage Science). The prepared samples were sequenced
on a PacBio RSII instrument (DNA/Polymerase Binding
Kit P6 v2, DNA Sequencing Kit 4.0 v2, Pacific Biosci-
ences), the mean read length was 13.7 kb. One SMRT-
cell was used for the KO sample (229x coverage) and 2
SMRT-cells were run for the WT sample (140x and 95x
coverage). For Illumina sequencing, libraries were pre-
pared with the Nextera DNA Library Preparation kit and

Table 2 List of M. bovis BCG strains for which high per-bp coverage complete genomes are available

Strain Method type
DU2

DU2
resolved

Accession
numbers

Reference Year of
publication

BCG Pasteur
1173P2

Sanger sequencing (ABI 3700) of a pUC19, two pMAQ1b,
a M13 and a cloned shotgun library, earlier analysis of BAC
clones had already identified the DU1 and DU2 [13]

IV yes PRJEA18059,
AM408590

[11] 2007

BCG Tokyo 172 SOLiD (Agencourt Bioscience Corporation) sequencing
of pAGEN vector library (about 4 kb and 800 bp inserts)
and a fosmid insert library (about 40 kb)

I yes (2x) PRJDA31211,
AP010918

[9] 2009

BCG Moreau RDJ Sanger (ABI 3730) sequencing of 2 pBluescript libraries,
gap closure via PCR

I no PRJEA70285,
AM412059

[43] 2011

BCG Tice ATCC
35743

Illumina genome sequencing, multiplex PCR
and primer walking

IV no PRJNA63839,
CP003494

[7] 2011

BCG Mexico 1931 Roche 454 pyrosequencing, Sanger sequencing of fos-end
sequences of 250 fosmids, sequencing of three fosmids
and 110 PCR end reads

IV yes PRJNA45811,
CP002095

[44] 2011

BCG Korea 1168P Roche 454 (GS-FLX) and Illumina (HiSeq) sequencing,
gap closure via PCR and primer walking

IV yes (2x) PRJNA170028,
CP003900

[45] 2013

BCG Russia 368 Roche 454 (GS Junior) sequencing on a shotgun and a 3 kb
paired-end library, gap closure via PCR and Sanger sequencing

I yes (2x) PRJNA256163,
CP009243

[46, 47] 2014

BCG 3281
(clinical isolate)

Roche 454 (GS-FLX) and Illumina (Hiseq2500) sequencing,
gap closure via PCR

III yes PRJNA251957,
CP008744

[27] 2015

BCG Russia BCG-1 Roche 454 (GS-FLX) sequencing of a shotgun library,
Ion Torrent PGM sequencing of a mate-pair library

I yes (2x) PRJNA306822,
CP013741

[48] 2016

BCG Danish 1331
(07/270)

PacBio (RSII) (long read) sequencing (235x coverage)
and Illumina (MiSeq) (short read) sequencing

III yes PRJNA494982,
CP039850

this study 2019

For each strain, we indicated the used method to create the assembled genome, the type of DU2 present in the strain, whether the DU2 was resolved in the
genome assembly, the BioProject and genome assembly accession number, the reference to the study in which genome assembly method was published and the
year of publication. In the ‘method’ description, we have put labor/capital-intensive aspects in bold, illustrating that our approach using solely massive parallel
sequencing, is the only one that provides both high per-bp accuracy (allowing for SNP calling) and complete resolution of the assembly across large
repeat regions
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sequenced on an Illumina MiSeq instrument (MiSeq Re-
agent Kit v2 Nano, PE250 (paired end 250 bp), 500Mb),
with an average of 55-56x coverage per genome.

Genome assembly and analysis
Illumina reads were quality-filtered and adapter se-
quences were trimmed (Trimmomatic v0.36 [54]), after
which overlapping paired-end reads were merged into
single reads (BBMerge v36.69 [55]). PacBio read se-
quences were corrected using the high quality Illumina
reads (Lordec v0.6 [56]). The unmerged and merged
Illumina reads were assembled into a draft assembly
(SPAdes v3.9.0 [57]). The draft assembly was scaffolded
using the corrected PacBio reads (SSPACE-LongRead
v3.0 [58]). Finally, gaps in the scaffold were closed (Gap-
Filler v1.10 [59]) and the assembly was improved (Pilon
v1.20 [60]), both using the trimmed Illumina reads.
The exact sequence of the DU1 region was based on a

second round of local de novo assembly (SPAdes v3.9.0
[57]) using soft-clipped Illumina reads surrounding the
draft DU1 region where the Illumina read coverage is
more than two times higher than the background cover-
age. The DU2 repeat was resolved by comparing the
SPAdes assembly with the assembly from HINGE
(v201705) [61], where the R1 and R2 regions have been
separated. The junction sequences of DU1 and DU2
were further confirmed by aligning uniquely mapped
PacBio reads and the results were always consistent with
PCR and Sanger sequencing.
Annotation was done by combining an automatic gene

prediction program with heuristic models (GeneMark.hmm
[62]) and the existing M. bovis BCG Pasteur and M. tb ref-
erence [51] gene models (GMAP [63] and TBLASTN [64])
along with UniProt database [65] (BLASTP [64]). Non-
coding RNA were predicted (tRNAScan-SE [66] and Infer-
nal [67]). The assigned annotations were manually checked
(Artemis [68] and CLC Main Workbench 8 [69], e.g.
correct start codon), by comparative analysis with the 3 ref-
erence genomes for M. tb [51], M. bovis [52] and M. bovis
BCG Pasteur [53], as listed above. Inconsistencies in the an-
notation and/or assembly were analyzed in detail and/or
verified by PCR and Sanger Sequencing.
A probabilistic variant analysis was performed by map-

ping the BBmerged Illumina reads to the BCG Pasteur
reference genome (BWA-MEM [70]) and calling variants
by GATK UnifiedGenotyper [71] (Count ≥10 & Variant
Probability > 0.9), whereafter variant annotations and
functional effect prediction were carried out with SnpEff
and SnpSift [72]. The orthologous relationships between
M. tb, M. bovis BCG Pasteur and BCG Danish WT and
sapM KO were investigated, the proteins of strains (M.
tb H37Rv [51], BCG Pasteur 1173P2 [53], BCG Danish
WT and sapM KO (this study)) were searched using
all-against-all with BLASTP [64], after which the

result was analyzed by TribeMCL [73] and i-ADHoRe
3.0 [74] based on the genome synteny information
(Additional file 3: Table S9).
To validate the detection of the DU1, the DU1 dupli-

cation region was reanalyzed in published genome data
[12, 15–20]. Probes on tiling array or Illumina short
sequencing reads were mapped to the M. tb reference
strain [48] (BWA-MEM [70]). The tilling array data were
directly compared by the intensity ratio between H37Rv
and the sampled strains (ratio = strain / H37Rv). A ratio
larger than one was considered as a duplication in the
sampled strain. The DU1 duplications in the Illumina
data were detected by cn.mops [75]. In brief, cn.mops
first took all aligned BAM files (BWA-MEM) and nor-
malized the mappable read counts to make it compatible
across all samples in the comparison. A mixture of Pois-
son model was then used to compare read counts for
each genomic position (bin size 500 bp) across all sam-
ples. A mixture of Poisson model will not be affected by
read count variations along the chromosomes caused by
technical or biological noise, since a separate model is
constructed at each position. Using a Bayesian approach,
read counts and the noise across samples were decom-
posed by an expectation maximization algorithm into in-
teger copy numbers (with confidence intervals).
In Fig. 1 a graphical overview of the performed

genome analysis pipeline is given. All presented next-
generation sequencing data were integrated in an online
genome browser (JBrowse) [76].

PCR analysis, gel electrophoresis and sanger sequencing
PCR (GoTaq®Green, Promega) was performed on gDNA
using primers listed in Additional file 1: Table S1 and
S4. PCR products were run on a 1.2% agarose gel,
stained with Midori Green and visualized under ultravio-
let light. To confirm the single nucleotide polymor-
phisms (SNPs), regions of interest were amplified
(Phusion High-Fidelity DNA Polymerase, NEB) from
gDNA with primers listed in Additional file 1: Table S5.
The resulting PCR products were purified (AMPure XP
beads) and Sanger sequenced with (a) nested primer(s)
(Additional file 1: Table S1 and S5).

Copy number profiling via qPCR
Real-time quantitative PCR was done on a LightCycler
480 (Roche Diagnostics) using the SensiFast SYBR-
NoRox kit (Bioline) in quadruplicate for each gDNA
sample using primers listed in Additional file 1: Table
S6. Determination of the average relative quantities was
performed using the qbasePLUS software (Biogazelle).
All results were normalized using the reference genes
16S rRNA, nuoG and mptpB.
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