179 research outputs found

    Ocular manifestations of Hansen's disease

    Get PDF
    A detailed ophthalmic evaluation including slitlamp biomicroscopy, measurement of corneal sensitivity using Cochet and Bonnet aesthesiometer, Schirmer's test and Goldmann applanation tonometry was carried out in 89 patients of Hansen's disease attending the leprosy clinic with or without ocular symptoms and willing to undergo eye evaluation. Thirty-one patients had lepromatous leprosy (8 with erythema nodosum leprosum), 56 patients had borderline disease (13 with reversal reactions) and 2 had tuberculoid disease. In addition to the well documented changes of lagophthalmos (6.7%), uveitis (7.3%) and cataracts (19%), we noted prominent corneal nerves in 133 eyes (74.7%), beaded corneal nerves in 19 eyes (10.7%), corneal scarring in 10 eyes (5.6%), corneal hypoaesthesia in 51 eyes (28%) and dry eye in 18 eyes (13%). Beaded corneal nerves and/or stomal infiltrates occurred mainly in the lepromatous group (75%). Ocular hypotony (IOP less than 12 mm Hg) was not seen more frequently in Hansen's as compared to age and sex matched controls with refractive errors or cataracts (33.7%, vs. 37.8%,p=0.33). Our study highlights the primary corneal involvement with corneal neuropathy as the predominant feature of Hansen's disease

    Inhibition of cytochrome P450 2D6 metabolism of hydrocodone to hydromorphone does not importantly affect abuse liability

    Get PDF
    ABSTRACT Enzymatic conversion of hydrocodone to hydromorphone is catalyzed by cytochrome P450 2D6, which is inactive in about 7% of Caucasians [poor metabolizers (PMs)] and can be inhibited by quinidine pretreatment in the remainder [extensive metabolizers (EMs)]. If hydromorphone, having a substantially higher -receptor affinity than hydrocodone, contributes importantly to the physiological and subjective effects of oral hydrocodone, then PMs should be less responsive to the same doses, and quinidine pretreatment should cause EMs to temporarily respond as PMs. Seventeen EMs and 8 PMs who previously responded positively to hydromorphone s.c. received placebo and hydrocodone (10 mg, 15 mg and 22.5 mg p.o.) and were retested with their favorite dose after placebo or quinidine (100 mg) pretreatment; physiological and subjective measures were collected at base line and four times after drug administration, and urine was collected for 8 hr. EMs and PMs were equally responsive to oral hydrocodone, and quinidine had no consistent effect on their responses, even though quinidine abolished the pre-existing metabolic differences in hydromorphone production, as measured in urine. These data suggest only a small role of hydromorphone in eliciting abuserelated responses to oral hydrocodone. The genetic polymorphism of the drug-metabolizing enzyme CYP2D6 results in phenotypic differences in the pharmacokinetics of many drugs One drug for which there is evidence of phenotypic differences in response is codeine, which is O-demethylated by CYP2D6 to form morphine Hydrocodone differs structurally from codeine in that the C6-position is occupied by a keto-group, and thus the drug does not undergo the extensive conjugation (ΟΎ60%) that codeine undergoe

    The influence of the Cyclin D1 870 G>A polymorphism as an endometrial cancer risk factor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cyclin D1 is integral for the G1 to S phase of the cell cycle as it regulates cellular proliferation. A polymorphism in cyclin D1, 870 G>A, causes overexpression and supports uncontrollable cellular growth. This polymorphism has been associated with an increased risk of developing many cancers, including endometrial cancer.</p> <p>Methods</p> <p>The 870 G>A polymorphisms (rs605965) in the cyclin D1 gene was genotyped in an Australian endometrial cancer case-control population including 191 cases and 291 controls using real-time PCR analysis. Genotype analysis was performed using chi-squared (Ο‡<sup>2</sup>) statistics and odds ratios were calculated using unconditional logistic regression, adjusting for potential endometrial cancer risk factors.</p> <p>Results</p> <p>Women homozygous for the variant cyclin D1 870 AA genotype showed a trend for an increased risk of developing endometrial cancer compared to those with the wild-type GG genotype, however this result was not statistically significant (OR 1.692 95% CI (0.939–3.049), p = 0.080). Moreover, the 870 G>A polymorphism was significantly associated with family history of colorectal cancer. Endometrial cancer patients with the homozygous variant AA genotype had a higher frequency of family members with colorectal cancer in comparison to endometrial cancer patients with the GG and combination of GG and GA genotypes (GG versus AA; OR 2.951, 95% CI (1.026–8.491), p = 0.045, and GG+GA versus AA; OR 2.265, 95% CI (1.048–4.894), p = 0.038, respectively).</p> <p>Conclusion</p> <p>These results suggest that the cyclin D1 870 G>A polymorphism is possibly involved in the development of endometrial cancer. A more complex relationship was observed between this polymorphism and familial colorectal cancer.</p

    Fine-mapping of the HNF1B multicancer locus identifies candidate variants that mediate endometrial cancer risk.

    Get PDF
    Common variants in the hepatocyte nuclear factor 1 homeobox B (HNF1B) gene are associated with the risk of Type II diabetes and multiple cancers. Evidence to date indicates that cancer risk may be mediated via genetic or epigenetic effects on HNF1B gene expression. We previously found single-nucleotide polymorphisms (SNPs) at the HNF1B locus to be associated with endometrial cancer, and now report extensive fine-mapping and in silico and laboratory analyses of this locus. Analysis of 1184 genotyped and imputed SNPs in 6608 Caucasian cases and 37 925 controls, and 895 Asian cases and 1968 controls, revealed the best signal of association for SNP rs11263763 (P = 8.4 Γ— 10(-14), odds ratio = 0.86, 95% confidence interval = 0.82-0.89), located within HNF1B intron 1. Haplotype analysis and conditional analyses provide no evidence of further independent endometrial cancer risk variants at this locus. SNP rs11263763 genotype was associated with HNF1B mRNA expression but not with HNF1B methylation in endometrial tumor samples from The Cancer Genome Atlas. Genetic analyses prioritized rs11263763 and four other SNPs in high-to-moderate linkage disequilibrium as the most likely causal SNPs. Three of these SNPs map to the extended HNF1B promoter based on chromatin marks extending from the minimal promoter region. Reporter assays demonstrated that this extended region reduces activity in combination with the minimal HNF1B promoter, and that the minor alleles of rs11263763 or rs8064454 are associated with decreased HNF1B promoter activity. Our findings provide evidence for a single signal associated with endometrial cancer risk at the HNF1B locus, and that risk is likely mediated via altered HNF1B gene expression

    Toll-Like Receptor (TLR) and Nucleosome-binding Oligomerization Domain (NOD) gene polymorphisms and endometrial cancer risk

    Get PDF
    Background: Endometrial cancer is the most common gynaecological malignancy in women of developed countries. Many risk factors implicated in endometrial cancer trigger inflammatory events; therefore, alterations in immune response may predispose an individual to disease. Toll-like receptors (TLRs) and nucleosome-binding oligomerization domain (NOD) genes are integral to the recognition of pathogens and are highly polymorphic. For these reasons, the aim of the study was to assess the frequency of polymorphic variants in TLR and NOD genes in an Australian endometrial cancer population. Methods: Ten polymorphisms were genotyped in 191 endometrial cancer cases and 291 controls using real-time PCR: NOD1 (rs2075822, rs2907749, rs2907748), NOD2 (rs5743260, rs2066844, rs2066845), TLR2 (rs5743708), TLR4 (rs4986790) and TLR9 (rs5743836, rs187084). Results: Haplotype analysis revealed that the combination of the variant alleles of the two TLR9 polymorphisms, rs5743836 and rs187084, were protective for endometrial cancer risk: OR 0.11, 95% CI (0.03-0.44), p = 0.002. This result remained highly significant after adjustment for endometrial cancer risk factors and Bonferroni correction for multiple testing. There were no other associations observed for the other polymorphisms in TLR2, TLR4, NOD1 and NOD2. Conclusions: The variant 'C' allele of rs5743836 causes greater TLR9 transcriptional activity compared to the 'T' allele, therefore, higher TLR9 activity may be related to efficient removal of microbial pathogens within the endometrium. Clearly, the association of these TLR9 polymorphisms and endometrial cancer risk must be further examined in an independent population. The results point toward the importance of examining immune response in endometrial tumourgenesis to understand new pathways that may be implicated in disease

    At-Risk and Recent-Onset Type 1 Diabetic Subjects Have Increased Apoptosis in the CD4+CD25+(high) T-Cell Fraction

    Get PDF
    BACKGROUND: In experimental models, Type 1 diabetes T1D can be prevented by adoptive transfer of CD4+CD25+ FoxP3+ suppressor or regulatory T cells. Recent studies have found a suppression defect of CD4+CD25+(high) T cells in human disease. In this study we measure apoptosis of CD4+CD25+(high) T cells to see if it could contribute to reduced suppressive activity of these cells. METHODS AND FINDINGS: T-cell apoptosis was evaluated in children and adolescent 35 females/40 males subjects comprising recent-onset and long-standing T1D subjects and their first-degree relatives, who are at variable risk to develop T1D. YOPRO1/7AAD and intracellular staining of the active form of caspase 3 were used to evaluate apoptosis. Isolated CD4+CD25+(high) and CD4+CD25βˆ’ T cells were co-cultured in a suppression assay to assess the function of the former cells. We found that recent-onset T1D subjects show increased apoptosis of CD4+CD25+(high) T cells when compared to both control and long-standing T1D subjects p<0.0001 for both groups. Subjects at high risk for developing T1D 2–3Ab+ve show a similar trend p<0.02 and p<0.01, respectively. On the contrary, in long-standing T1D and T2D subjects, CD4+CD25+(high) T cell apoptosis is at the same level as in control subjects pβ€Š=β€ŠNS. Simultaneous intracellular staining of the active form of caspase 3 and FoxP3 confirmed recent-onset FoxP3+ve CD4+CD25+(high) T cells committed to apoptosis at a higher percentage 15.3Β±2.2 compared to FoxP3+ve CD4+CD25+(high) T cells in control subjects 6.1Β±1.7 p<0.002. Compared to control subjects, both recent-onset T1D and high at-risk subjects had significantly decreased function of CD4+CD25+(high) T cells pβ€Š=β€Š0.0007 and pβ€Š=β€Š0.007, respectively. CONCLUSIONS: There is a higher level of ongoing apoptosis in CD4+CD25+(high) T cells in recent-onset T1D subjects and in subjects at high risk for the disease. This high level of CD4+CD25+(high) T-cell apoptosis could be a contributing factor to markedly decreased suppressive potential of these cells in recent-onset T1D subjects

    Comprehensive genetic assessment of the ESR1 locus identifies a risk region for endometrial cancer

    Get PDF
    Excessive exposure to estrogen is a well-established risk factor for endometrial cancer (EC), particularly for cancers of endometrioid histology. The physiological function of estrogen is primarily mediated by estrogen receptor alpha, encoded by ESR1. Consequently, several studies have investigated whether variation at the ESR1 locus is associated with risk of EC, with conflicting results. We performed comprehensive fine-mapping analyses of 3633 genotyped and imputed single nucleotide polymorphisms (SNPs) in 6607 EC cases and 37 925 controls. There was evidence of an EC risk signal located at a potential alternative promoter of the ESR1 gene (lead SNP rs79575945, P=1.86x10(-5)), which was stronger for cancers of endometrioid subtype (P=3.76x10(-6)). Bioinformatic analysis suggests that this risk signal is in a functionally important region targeting ESR1, and eQTL analysis found that rs79575945 was associated with expression of SYNE1, a neighbouring gene. In summary, we have identified a single EC risk signal located at ESR1, at study-wide significance. Given SNPs located at this locus have been associated with risk for breast cancer, also a hormonally driven cancer, this study adds weight to the rationale for performing informed candidate fine-scale genetic studies across cancer types
    • …
    corecore