26 research outputs found

    Prediction of competitive adsorption on coal by a lattice DFTmodel

    Get PDF
    Adsorption is one of the main mechanisms involved in the ECBM process, a technology where CO2(or flue gas, i.e. a CO2/N2mixture) is injected into a deep coal bed, with the aim of storing CO2by simultaneously recovering CH4. A detailed understanding of the microscopic adsorption process is therefore needed, as the latter controls the displacement process. A lattice DFT model, previously extended to mixtures, has been applied to predict the competitive adsorption behavior of CO2, CH4and N2and of their mixtures in slit-shaped pores of 1.2 and 8nm width. In particular, the effect of temperature, bulk composition and density on the resulting lattice pore profiles and on the lattice excess adsorption isotherms has been investigated. Important insights could be obtained; when approaching near critical conditions in the mesopores, a characteristic peak in the excess adsorption isotherm of CO2appears. The same effect could be observed neither for the other gases nor in the micropores. Moreover, in the case of mixtures, a depletion of the less adsorbed species close to the adsorbent surface is observed, which eventually results in negative lattice excess adsorption at high bulk densitie

    Competitive adsorption equilibria of CO2 and CH4 on a dry coal

    Get PDF
    Gases like CO2 and CH4 are able to adsorb on the coal surface, but also to dissolve into its structure causing the coal to swell. In this work, the binary adsorption of CO2 and CH4 on a dry coal (Sulcis Coal Province, Italy) and its swelling behavior are investigated. The competitive adsorption measurements are performed at 45 °C and up to 190bar for pure CO2, CH4 and four mixtures of molar feed compositions of 20.0, 40.0, 60.0 and 80.0% CO2 using a gravimetric-chromatographic technique. The results show that carbon dioxide adsorbs more favorably than methane leading to an enrichment of the fluid phase in CH4. Coal swelling is determined using a high-pressure view cell, by exposing a coal disc to CO2, CH4 and He at 45 and 60 °C and up to 140bar. For CO2 and CH4 a maximum swelling of about 4 and 2% is found, whereas He shows negligible swelling. The presented adsorption and swelling data are then discussed in terms of fundamental, thermodynamic aspects of adsorption and properties which are crucial for an ECBM operation, i.e. the CO2 storage capacity and the dynamics of the replacement of CH4 by CO

    Reliable measurement of near-critical adsorption by gravimetric method

    Get PDF
    A gravimetric apparatus is used to measure the excess adsorption at high pressure. The equipment consists of a Rubotherm magnetic suspension balance, which allows to measure also the density of the fluid. In order to obtain the excess adsorbed amount, the measured weight has to be corrected with a buoyancy term, for which the density of the adsorbing fluid has to be known at each experimental conditions. Therefore the homogeneity of density in the high-pressure cell plays a fundamental role in determining the accuracy of the measured excess adsorbed amounts. This paper is intended to show the impact of the actual approach to thermostating the unit on the density distribution of the adsorbing fluid inside the high-pressure cell. Namely, by changing the inlet position of the heating fluid, large differences in the measured excess adsorption are produced. The closer to the critical point of the fluid, the stronger are these differences. An optimum configuration for our measuring device has been found and it has been used to study the adsorption of carbon dioxide (CO2) on Filtrasorb 400 activated carbon at supercritical and near-critical condition

    Near-critical adsorption of CO2 on 13X zeolite and N2O onsilicagel: lack of evidence of critical phenomena

    Get PDF
    The excess adsorption of CO2 on 13X zeolite and of N2O on silica gel has been studied at high pressure using a magnetic suspension balance, i.e. a gravimetric method. Recently, a detailed study on the density distribution in the measuring cell of the magnetic suspension balance showed that a proper approach to thermostatting the unit should be used in order to obtain reliable and accurate excess adsorption measurements. This is particularly important in the vicinity of the critical point of the fluid, where the density is strongly dependent on pressure and temperature. In the past, several effects were observed in our laboratory when measuring near-critical adsorption on 13X zeolite and on silica gel, namely critical adsorption and critical depletion. In the present study, these effects have been checked using the balance in the new thermostatting configuration, and the conclusion can be drawn that the accuracy of the measurement is not sufficient to prove that they indeed occur. More accurate adsorption data for the two systems have been measured and reporte

    Cold-Induced Changes in the Protein Ubiquitin

    Get PDF
    Conformational changes are essential for protein-protein and protein-ligand recognition. Here we probed changes in the structure of the protein ubiquitin at low temperatures in supercooled water using NMR spectroscopy. We demonstrate that ubiquitin is well folded down to 263 K, although slight rearrangements in the hydrophobic core occur. However, amide proton chemical shifts show non-linear temperature dependence in supercooled solution and backbone hydrogen bonds become weaker in the region that is most prone to cold-denaturation. Our data suggest that the weakening of the hydrogen bonds in the β-sheet of ubiquitin might be one of the first events that occur during cold-denaturation of ubiquitin. Interestingly, the same region is strongly involved in ubiquitin-protein complexes suggesting that this part of ubiquitin more easily adjusts to conformational changes required for complex formation

    High-Resolution 3D Structure Determination of Kaliotoxin by Solid-State NMR Spectroscopy

    Get PDF
    High-resolution solid-state NMR spectroscopy can provide structural information of proteins that cannot be studied by X-ray crystallography or solution NMR spectroscopy. Here we demonstrate that it is possible to determine a protein structure by solid-state NMR to a resolution comparable to that by solution NMR. Using an iterative assignment and structure calculation protocol, a large number of distance restraints was extracted from 1H/1H mixing experiments recorded on a single uniformly labeled sample under magic angle spinning conditions. The calculated structure has a coordinate precision of 0.6 Å and 1.3 Å for the backbone and side chain heavy atoms, respectively, and deviates from the structure observed in solution. The approach is expected to be applicable to larger systems enabling the determination of high-resolution structures of amyloid or membrane proteins

    Structural Polymorphism of 441-Residue Tau at Single Residue Resolution

    Get PDF
    Alzheimer disease is characterized by abnormal protein deposits in the brain, such as extracellular amyloid plaques and intracellular neurofibrillary tangles. The tangles are made of a protein called tau comprising 441 residues in its longest isoform. Tau belongs to the class of natively unfolded proteins, binds to and stabilizes microtubules, and partially folds into an ordered β-structure during aggregation to Alzheimer paired helical filaments (PHFs). Here we show that it is possible to overcome the size limitations that have traditionally hampered detailed nuclear magnetic resonance (NMR) spectroscopy studies of such large nonglobular proteins. This is achieved using optimal NMR pulse sequences and matching of chemical shifts from smaller segments in a divide and conquer strategy. The methodology reveals that 441-residue tau is highly dynamic in solution with a distinct domain character and an intricate network of transient long-range contacts important for pathogenic aggregation. Moreover, the single-residue view provided by the NMR analysis reveals unique insights into the interaction of tau with microtubules. Our results establish that NMR spectroscopy can provide detailed insight into the structural polymorphism of very large nonglobular proteins

    Accessing ns–μs side chain dynamics in ubiquitin with methyl RDCs

    Get PDF
    This study presents the first application of the model-free analysis (MFA) (Meiler in J Am Chem Soc 123:6098–6107, 2001; Lakomek in J Biomol NMR 34:101–115, 2006) to methyl group RDCs measured in 13 different alignment media in order to describe their supra-τc dynamics in ubiquitin. Our results indicate that methyl groups vary from rigid to very mobile with good correlation to residue type, distance to backbone and solvent exposure, and that considerable additional dynamics are effective at rates slower than the correlation time τc. In fact, the average amplitude of motion expressed in terms of order parameters S2 associated with the supra-τc window brings evidence to the existence of fluctuations contributing as much additional mobility as those already present in the faster ps-ns time scale measured from relaxation data. Comparison to previous results on ubiquitin demonstrates that the RDC-derived order parameters are dominated both by rotameric interconversions and faster libration-type motions around equilibrium positions. They match best with those derived from a combined J-coupling and residual dipolar coupling approach (Chou in J Am Chem Soc 125:8959–8966, 2003) taking backbone motion into account. In order to appreciate the dynamic scale of side chains over the entire protein, the methyl group order parameters are compared to existing dynamic ensembles of ubiquitin. Of those recently published, the broadest one, namely the EROS ensemble (Lange in Science 320:1471–1475, 2008), fits the collection of methyl group order parameters presented here best. Last, we used the MFA-derived averaged spherical harmonics to perform highly-parameterized rotameric searches of the side chains conformation and find expanded rotamer distributions with excellent fit to our data. These rotamer distributions suggest the presence of concerted motions along the side chains

    Cys-Ph-TAHA: a lanthanide binding tag for RDC and PCS enhanced protein NMR

    Get PDF
    Here we present Cys-Ph-TAHA, a new nonadentate lanthanide tag for the paramagnetic labelling of proteins. The tag can be easily synthesized and is stereochemically homogenous over a wide range of temperatures, yielding NMR spectra with a single set of peaks. Bound to ubiquitin, it induced large residual dipolar couplings and pseudocontact shifts that could be measured easily and agreed very well with the protein structure. We show that Cys-Ph-TAHA can be used to label large proteins that are biochemically challenging such as the Lac repressor in a 90 kDa ternary complex with DNA and inducer

    Prediction of competitive adsorption on coal by a lattice DFTmodel

    Get PDF
    Adsorption is one of the main mechanisms involved in the ECBM process, a technology where CO2(or flue gas, i.e. a CO2/N2mixture) is injected into a deep coal bed, with the aim of storing CO2by simultaneously recovering CH4. A detailed understanding of the microscopic adsorption process is therefore needed, as the latter controls the displacement process. A lattice DFT model, previously extended to mixtures, has been applied to predict the competitive adsorption behavior of CO2, CH4and N2and of their mixtures in slit-shaped pores of 1.2 and 8nm width. In particular, the effect of temperature, bulk composition and density on the resulting lattice pore profiles and on the lattice excess adsorption isotherms has been investigated. Important insights could be obtained; when approaching near critical conditions in the mesopores, a characteristic peak in the excess adsorption isotherm of CO2appears. The same effect could be observed neither for the other gases nor in the micropores. Moreover, in the case of mixtures, a depletion of the less adsorbed species close to the adsorbent surface is observed, which eventually results in negative lattice excess adsorption at high bulk densitie
    corecore