58 research outputs found

    Sugar utilization patterns and respiro-fermentative metabolism in the baker’s yeast Torulaspora delbrueckii

    Get PDF
    The highly osmo- and cryotolerant yeast species Torulaspora delbrueckii is an important case study among the non-Saccharomyces yeast species. The strain T delbrueckii PYCC 532 1, isolated from traditional corn and rye bread dough in northern Portugal, is considered particularly interesting for the baking industry. This paper reports the sugar utilization patterns of this strain, using media with glucose, maltose and sucrose, alone or in mixtures. Kinetics of growth, biomass and ethanol yields, fermentation and respiration rates, hydrolase activities and sugar uptake rates were used to infer the potential applied relevance of this yeast in comparison to a conventional baker's strain of Saccharomyces cerevisiae. The results showed that both maltase and maltose transport in T delbrueckii were subject to glucose repression and maltose induction, whereas invertase was subject to glucose control but not dependent on sucrose induction. A comparative analysis of specific sugar consumption rates and transport capacities suggests that the transport step limits both glucose and maltose metabolism. Specific rates of CO2 production and O-2 consumption showed a significantly higher contribution of respiration to the overall metabolism in T delbrueckii than in S. cerevisiae. This was reflected in the biomass yields from batch cultures and could represent an asset for the large-scale production of the former species. This work contributes to a better understanding of the physiology of a non-conventional yeast species, with a view to the full exploitation of T delbrueckii by the baking industry.This work was partially funded by Agência de Inovação (AdI) program POCI2010/2.3, project ‘PARFERM’. C. A.-A. and A. P. were supported by PhD fellowships from PRAXIS XXI – BD/21543/99 and BD/13282/ 2003, respectively (Fundação para a Ciência e para a Tecnologia, Portugal).info:eu-repo/semantics/publishedVersio

    Breathing Current Domains in Globally Coupled Electrochemical Systems: A Comparison with a Semiconductor Model

    Full text link
    Spatio-temporal bifurcations and complex dynamics in globally coupled intrinsically bistable electrochemical systems with an S-shaped current-voltage characteristic under galvanostatic control are studied theoretically on a one-dimensional domain. The results are compared with the dynamics and the bifurcation scenarios occurring in a closely related model which describes pattern formation in semiconductors. Under galvanostatic control both systems are unstable with respect to the formation of stationary large amplitude current domains. The current domains as well as the homogeneous steady state exhibit oscillatory instabilities for slow dynamics of the potential drop across the double layer, or across the semiconductor device, respectively. The interplay of the different instabilities leads to complex spatio-temporal behavior. We find breathing current domains and chaotic spatio-temporal dynamics in the electrochemical system. Comparing these findings with the results obtained earlier for the semiconductor system, we outline bifurcation scenarios leading to complex dynamics in globally coupled bistable systems with subcritical spatial bifurcations.Comment: 13 pages, 11 figures, 70 references, RevTex4 accepted by PRE http://pre.aps.or

    Robust Metabolic Responses to Varied Carbon Sources in Natural and Laboratory Strains of Saccharomyces cerevisiae

    Get PDF
    Understanding factors that regulate the metabolism and growth of an organism is of fundamental biologic interest. This study compared the influence of two different carbon substrates, dextrose and galactose, on the metabolic and growth rates of the yeast Saccharomyces cerevisiae. Yeast metabolic and growth rates varied widely depending on the metabolic substrate supplied. The metabolic and growth rates of a yeast strain maintained under long-term laboratory conditions was compared to strain isolated from natural condition when grown on different substrates. Previous studies had determined that there are numerous genetic differences between these two strains. However, the overall metabolic and growth rates of a wild isolate of yeast was very similar to that of a strain that had been maintained under laboratory conditions for many decades. This indicates that, at in least this case, metabolism and growth appear to be well buffered against genetic differences. Metabolic rate and cell number did not co-vary in a simple linear manner. When grown in either dextrose or galactose, both strains showed a growth pattern in which the number of cells continued to increase well after the metabolic rate began a sharp decline. Previous studied have reported that O2 consumption in S. cerevisiae grown in reduced dextrose levels were elevated compared to higher levels. Low dextrose levels have been proposed to induce caloric restriction and increase life span in yeast. However, there was no evidence that reduced levels of dextrose increased metabolic rates, measured by either O2 consumption or CO2 production, in the strains used in this study

    When increasing population density can promote the evolution of metabolic cooperation.

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Publishing Group via the DOI in this record.Microbial cooperation drives ecological and epidemiological processes and is affected by the ecology and demography of populations. Population density influences the selection for cooperation, with spatial structure and the type of social dilemma, namely public-goods production or self-restraint, shaping the outcome. While existing theories predict that in spatially structured environments increasing population density can select either for or against cooperation, experimental studies with both public-goods production and self-restraint systems have only ever shown that increasing population density favours cheats. We suggest that the disparity between theory and empirical studies results from experimental procedures not capturing environmental conditions predicted by existing theories to influence the outcome. Our study resolves this issue and provides the first experimental evidence that high population density can favour cooperation in spatially structured environments for both self-restraint and public-goods production systems. Moreover, using a multi-trait mathematical model supported by laboratory experiments we extend this result to systems where the self-restraint and public-goods social dilemmas interact. We thus provide a systematic understanding of how the strength of interaction between the two social dilemmas and the degree of spatial structure within an environment affect selection for cooperation. These findings help to close the current gap between theory and experiments.RJL and IG: European Research Council No. 647292 MathModExp. BJP: Engineering and Physical Sciences Research Council Doctoral training grant studentship

    Mitochondrial-Nuclear DNA Interactions Contribute to the Regulation of Nuclear Transcript Levels as Part of the Inter-Organelle Communication System

    Get PDF
    Nuclear and mitochondrial organelles must maintain a communication system. Loci on the mitochondrial genome were recently reported to interact with nuclear loci. To determine whether this is part of a DNA based communication system we used genome conformation capture to map the global network of DNA-DNA interactions between the mitochondrial and nuclear genomes (Mito-nDNA) in Saccharomyces cerevisiae cells grown under three different metabolic conditions. The interactions that form between mitochondrial and nuclear loci are dependent on the metabolic state of the yeast. Moreover, the frequency of specific mitochondrial - nuclear interactions (i.e. COX1-MSY1 and Q0182-RSM7) showed significant reductions in the absence of mitochondrial encoded reverse transcriptase machinery. Furthermore, these reductions correlated with increases in the transcript levels of the nuclear loci (MSY1 and RSM7). We propose that these interactions represent an inter-organelle DNA mediated communication system and that reverse transcription of mitochondrial RNA plays a role in this process

    Production of mannosylglycerate in Saccharomyces cerevisiae by metabolic engineering and bioprocess optimization

    Get PDF
    Mannosylglycerate (MG) is one of the most widespread compatible solutes among marine microorganisms adapted to hot environments. This ionic solute holds excellent ability to protect proteins against thermal denaturation, hence a large number of biotechnological and clinical applications have been put forward. However, the current prohibitive production costs impose severe constraints towards large-scale applications. All known microbial producers synthesize MG from GDP-mannose and 3-phosphoglycerate via a two-step pathway in which mannosyl-3-phosphoglycerate is the intermediate metabolite. In an early work, this pathway was expressed in Saccharomyces cerevisiae with the goal to confirm gene function (Empadinhas et al. in J Bacteriol 186:4075--4084, 2004), but the level of MG accumulation was low. Therefore, in view of the potential biotechnological value of this compound, we decided to invest further effort to convert S. cerevisiae into an efficient cell factory for MG production.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684), BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020—Programa Operacional Regional do Norte and also by project LISBOA-01-0145-FEDER-007660 (Microbiologia Molecular, Estrutural e Celular) funded by FEDER through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI). Cristiana Faria was supported by a Ph.D. Grant from FCT (Ref. SFRH/ BD/79552/2011).info:eu-repo/semantics/publishedVersio
    corecore