222 research outputs found

    Training Competences in Industrial Risk Prevention with Lego® Serious Play®: A Case Study

    Get PDF
    This paper proposes the use of the Lego® Serious Play® (LSP) methodology as a facilitating tool for the introduction of competences for Industrial Risk Prevention by engineering students from the industrial branch (electrical, electronic, mechanical and technological engineering), presenting the results obtained in the Universities of Cadiz and Seville in the academic years 2017–2019. Current Spanish legislation does not reserve any special legal attribution, nor does it require specific competence in occupational risk prevention for the regulated profession of a technical industrial engineer (Order CIN 351:2009), and only does so in a generic way for that of an industrial engineer (Order CIN 311:2009). However, these universities consider the training in occupational health and safety for these future graduates as an essential objective in order to develop them for their careers in the industry. The approach is based on a series of challenges proposed (risk assessments, safety inspections, accident investigations and fire protection measures, among others), thanks to the use of “gamification” dynamics with Lego® Serious Play®. In order to carry the training out, a set of specific variables (industrial sector, legal and regulatory framework, business organization and production system), and transversal ones (leadership, teamwork, critical thinking and communication), are incorporated. Through group models, it is possible to identify dangerous situations, establish causes, share and discuss alternative proposals and analyze the economic, environmental and organizational impact of the technical solutions studied, as well as take the appropriate decisions, in a creative, stimulating, inclusive and innovative context. In this way, the theoretical knowledge which is acquired is applied to improve safety and health at work and foster the prevention of occupational risks, promoting the commitment, effort, motivation and proactive participation of the student teams.Spanish Ministry of Science, Innovation and Universities / European Social Fund: Ramón y Cajal contract (RYC-2017-22222

    Modeling the effect of the electrode potential in SERS by electronic structure calculations.

    Get PDF
    Surface Enhanced Raman Spectroscopy (SERS), due to the ability of greatly intensify the weak Raman signal of molecules adsorbed to metal surfaces, has proven to be a very useful tool to investigate changes in the electronic structure of metal-molecule surface complex. A deep knowledge of the electronic structure of these metal-molecule hybrid systems is key in electrochemistry, catalysis, plasmonics, molecular electronics, and in the development of selective and ultra-sensitive analytical sensors. The origin of this huge enhancement in SERS is due to two contributions: the electromagnetic (EM), related to surface plasmons, and the chemical mechanism, due to resonant charge transfer (CT) process between the adsorbate and the metal (CTSERS). Unfortunately, the SERS implies very complex phenomena where the molecule and the metal nanoparticle are involved. This fact makes challenging to build realistic theoretical models that take into account both the metal and the molecule at quantum level. We propose a methodology, based on DFT and ab initio electronic calculations, to simulate the effect of the electrode potential on the absorption, on the charge transfer states energies, and on the electronic excitations in metal-molecule hybrid systems from a microscopic point of view. This methodology consists on the prediction of Raman intensities from ab initio calculations of the geometries or the energy gradients at the excited states Franck-Condon point, bringing the possibility to predict the intensities in CTSERS as well as in resonance Raman without the need to know the excited state geometries, not always feasible to compute. The microscopic model adopted to mimic the effect of the interphase electric potential consist in a molecule adsorbed to a linear silver cluster [Agn-Adsorbate]q, were n is the number of silver atoms, and the total charge of the system (q) is zero for n=2 and q=±1 for n=1, 3 and 7.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Knowledge as an Organizational Asset for Managing Complex Projects: The Case of Naval Platforms

    Get PDF
    Knowledge management (KM) involves learning from past experiences to avoid or correct scope misalignments, quality deviations, safety problems, time delays and/or cost overruns. KM is frequently materialized as a risk management (RM) plan. An RM plan allows for anticipating, avoiding, mitigating, or reducing potential problems impacting project performance. However, despite their high complementarity, KM and RM are not the same, nor share the same purpose. In the advent of the fourth industrial revolution, managing complex projects involves many KM-related challenges, such as differential competitiveness enhancement and value chain streamlining. Naval platforms are complex projects that require the integration of multiple sources of knowledge and information. They also need to keep on integrating latest digital technology innovations in their production processes. In this context, streamlining the requirements management may become a differential asset for project stakeholders of naval platforms. Namely, enhancing requirements management can make the customers' needs easier to meet, shorten the projects duration, reduce costs, optimize resources, and allow for higher flexibility. However, requirements management has KM as pre-requisite and RM as consequence. Unfortunately, potential synergies between KM and RM have remained largely unexplored in the project management literature, and so has requirements management as a potential bridge between both concepts. In this paper, a holistic model for shipbuilding organizations linking KM and RM is proposed. The model draws from existing KM and RM models while considering organizational factors, technological platforms, and competitiveness factors. A case study of a naval platform showing the model's applicability is provided. It is shown how the model can allow shipbuilding companies to sustain a competitive advantage by facilitating more robust decision making in dynamic project environments. Furthermore, the model also facilitates the identification of the companies' core competences to reach and keep a strong position in current global markets

    Distribution and targets of the relaxin-3 innervation of the septal area in the rat

    Get PDF
    Neural tracing studies have revealed that the rat medial and lateral septum are targeted by ascending projections from the nucleus incertus, a population of tegmental GABA neurons. These neurons express the relaxin-family peptide, relaxin-3, and pharmacological modulation of relaxin-3 receptors in medial septum alters hippocampal theta rhythm and spatial memory. In an effort to better understand the basis of these interactions, we have characterized the distribution of relaxin-3 fibers/terminals in relation to different septal neuron populations identified using established protein markers. Dense relaxin-3 fiber plexuses were observed in regions of medial septum containing hippocampal-projecting choline acetyltransferase (ChAT)-, neuronal nitric oxide synthase (nNOS)-, and parvalbumin (PV)-positive neurons. In lateral septum (LS), relaxin-3 fibers were concentrated in the ventrolateral nucleus of rostral LS and the ventral nucleus of caudal LS, with sparse labeling in the dorsolateral and medial nuclei of rostral LS, dorsal nucleus of caudal LS, and ventral portion nuclei. Relaxin-3 fibers were also observed in the septofimbrial and triangular septal nuclei. In the medial septum, we observed relaxin-3-immunoreactive contacts with ChAT-, PV-, and glutamate decarboxylase-67-positive neurons that projected to hippocampus, and contacts between relaxin-3 terminals and calbindin- and calretinin-positive neurons. Relaxin-3 colocalized with synaptophysin in nerve terminals in all septal areas, and ultrastructural analysis revealed these terminals were symmetrical and contacted spines, somata, dendritic shafts, and occasionally other axonal terminals. These data predict that this GABA/peptidergic projection modulates septohippocampal activity and hippocampal theta rhythm related to exploratory navigation, defensive and ingestive behaviors, and responses to neurogenic stressors. J. Comp. Neurol. 520:1903–1939, 2012. © 2011 Wiley Periodicals, Inc. Arousal neural pathways of the brain are associated with modulation of behavior in accordance with environmental requirements and a key node in the regulation of arousal is the forebrain septal area. Ascending connections from the medial septum to the hippocampus are proposed to provide “pacemaker” control of hippocampal theta rhythm (Vertes and Kocsis,1997; Hangya et al.,2009), which may underpin goal-oriented behavior (Vinogradova,1995) and plastic changes occurring during the formation of cognitive maps (O'Keefe,1993), whereas descending projections from the lateral septum target a wide variety of subcortical circuits related to visceral and metabolic functions, ranging from aggression, social and sexual behavior, to circadian rhythms (Albert and Chew,1980; Risold and Swanson,1997a; Veenema and Neumann,2007). The septal area plays a central role in controlling hippocampal function, and the importance of the medial septum for “pacemaking” of hippocampal theta rhythm was noted in early studies (Pestche and Stumpf,1962; Andersen et al.,1979; Vinogradova,1995). This view was strengthened by more recent EEG recordings in freely moving rats that demonstrated that the integrity of the entire medial and lateral septum-hippocampal network is critical for the generation of theta rhythm (Nerad and McNaughton,2006). There has also been a consensus over many years that the different types of neurons in the septal area play specific roles in generating theta synchrony, with slow-firing cholinergic neurons facilitating hippocampal firing, and parvalbumin GABAergic neurons that innervate GABAergic hippocampal interneurons driving disinhibition of pyramidal or granule cell inhibition, allowing hippocampal synchrony (Freund and Antal,1988; Freund and Gulyas,1997; Toth et al., 1997a; Wu et al.,2000), although more recent studies have questioned the relative importance of different neuron populations in awake animals (e.g., Simon et al.,2006). Neural tract-tracing studies in the rat by our laboratory and others have demonstrated that the septal area is targeted by ascending projections arising from the nucleus incertus (Goto et al.,2001; Olucha-Bordonau et al.,2003). Neurons of the nucleus incertus contain GABA and a range of peptides, such as cholecystokinin, neurotensin, neuromedin B, and atrial natriuretic peptide (Kubota et al.,1983; Ryan et al., 1995; Olucha-Bordonau et al.,2003; see Ryan et al.,2011, for review). Recent studies have revealed that a large population of nucleus incertus neurons express high levels of the peptide relaxin-3 (RLN3), which is primarily expressed in this region, in addition to smaller adjacent tegmental and midbrain cell groups (Burazin et al.,2002; Bathgate et al.,2003; Tanaka et al.,2005; Ma et al.,2007). The nucleus incertus provides a distinct pattern of ascending projections to raphé nuclei, periaqueductal gray, supramammillary nucleus, several hypothalamic nuclei, midline intralaminar nuclei, habenula, amygdala, hippocampus, the septal area, and the prefrontal cortex (Goto et al.,2001; Olucha-Bordonau et al.,2003). This pattern of efferents overlaps extensively with the forebrain distribution of RLN3-containing nerve fibers (Tanaka et al.,2005; Ma et al.,2007). The native receptor for RLN3 is G-protein coupled receptor-135 (GPCR135) (Liu et al.,2003) or “RXFP3” (Bathgate et al.,2006) and the regional topography of RXFP3 in rat brain is largely consistent with the distribution of RLN3-positive fibers (Ma et al.,2007). The strong connections of the nucleus incertus with a number of brain areas involved in brainstem-diencephalic modulation of hippocampal theta rhythm, such as the median raphé, supramammillary nucleus and the medial septum (Vertes et al., 1993a; Vertes and Kocsis,1997), led us to hypothesize a role for the nucleus incertus in theta rhythm activation. We subsequently demonstrated that stimulation of nucleus incertus in urethane-anesthetized rats increased theta and decreased delta activity of the hippocampus, whereas electrolytic lesion of the nucleus incertus abolished hippocampal theta induced by stimulation of the nucleus reticularis pontis oralis (RPO) (Nunez et al.,2006), a key brainstem generator of hippocampal theta rhythm (Vertes,1981, 1982; Nunez et al.,1991; Vertes et al., 1993b; Vertes and Kocsis,1997). The hippocampal area in which field potentials were recorded receives only sparse inputs from the nucleus incertus, and it was concluded that the influence of the nucleus incertus on hippocampal theta rhythm was most likely mediated by its effects within the medial septum and/or other lower brain structures. In fact, the nucleus incertus is presumed to be the major relay station of RPO inputs to the medial septum (and hippocampus), as there are no direct projections from the RPO to hippocampus (Teruel-Marti et al.,2008). Additionally, RPO stimulation results in theta synchronization in the hippocampus and nucleus incertus, at the same frequency and with a high degree of coherence (Cervera-Ferri et al.,2011). Furthermore, because the nucleus incertus is an RLN3 locus in the brain, we hypothesized that RLN3 might contribute to these effects. Consistent with the presence of RLN3 and RXFP3 in the medial septum, injections of a selective RXFP3 agonist peptide (R3/I5; Liu et al.,2005) into this area increased theta activity of the hippocampal field potential in urethane-anesthetized rats, which was significantly attenuated by prior injection of a selective RXFP3 antagonist peptide, R3(BΔ23-27)R/I5 (Kuei et al.,2007; Ma et al.,2009b). R3/I5 infusion into the medial septum also increased hippocampal theta in rats in a familiar home cage environment, whereas R3(BΔ23-27)R/I5 decreased hippocampal theta in rats exploring a novel enriched context (Ma et al.,2009b). These data support a significant contribution of nucleus incertus and RLN3 inputs to the septum in regulating a fundamental brain activity and associated complex behaviors, and therefore characterization of the anatomical and cellular interactions between these inputs and their targets is required. The goal of the current study, therefore, was to map the distribution of RLN3 positive-fibers throughout the rat septum in relation to particular “landmark” neuron populations. This was achieved in a series of double-labeling experiments using a characterized RLN3 antiserum and antisera for established protein markers expressed by neurons in the septal area. We examined whether RLN3-positive fibers made close contacts with the major septal neuron types in triple- and quadruple-labeling studies combined with confocal microscopy analysis. We also examined the colocalization of RLN3 staining with that for the presynaptic marker, synaptophysin (Jahn et al.,1985), to assess the presence of RLN3 within synapses in the septum. Finally, we conducted ultrastructural analyses of RLN3-positive synapses in the septal area using electron microscopy. The data obtained provide strong anatomical evidence for a role of RLN3 in modulating the activity of specific neurons in the septum that have direct connections with the hippocampus, which may underlie the effects of RLN3/RXFP3 signaling on hippocampal theta rhythm and associated complex behaviors

    Identifying the most suitable endogenous control for determining gene expression in hearts from organ donors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quantitative real-time reverse transcription PCR (qRT-PCR) is a useful tool for assessing gene expression in different tissues, but the choice of adequate controls is critical to normalise the results, thereby avoiding differences and maximizing sensitivity and accuracy. So far, many genes have been used as a single reference gene, without having previously verified their value as controls. This practice can lead to incorrect conclusions and recent evidence indicates a need to use the geometric mean of data from several control genes. Here, we identified an appropriate set of genes to be used as an endogenous reference for quantifying gene expression in human heart tissue.</p> <p>Results</p> <p>Our findings indicate that out of ten commonly used reference genes (<it>GADPH, PPIA, ACTB, YWHAZ, RRN18S, B2M, UBC, TBP, RPLP and HPRT</it>), <it>PPIA</it>, <it>RPLP </it>and <it>GADPH </it>show the most stable gene transcription levels in left ventricle specimens obtained from organ donors, as assessed using geNorm and Normfinder software. The expression of <it>TBP </it>was found to be highly regulated.</p> <p>Conclusion</p> <p>We propose the use of <it>PPIA</it>, <it>RPLP </it>and <it>GADPH </it>as reference genes for the accurate normalisation of qRT-PCR performed on heart tissue. <it>TBP </it>should not be used as a control in this type of tissue.</p

    Relationship between the dynamics of telomere loss in peripheral blood leukocytes from osteoarthritis patients and mitochondrial DNA haplogroup

    Get PDF
    [Abstract] Objective: To evaluate the evolution of telomere length from peripheral blood leukocytes (PBLs) in subjects from the Osteoarthritis Initiative (OAI) cohort in relation to the incidence of osteoarthritis (OA), and to explore its possible interactive influence with the mitochondrial DNA (mtDNA) haplogroup. Methods: Dynamics of telomere sequence loss were quantified in PBLs from initially healthy individuals (without symptoms or radiological signs), 78 carrying the mtDNA cluster HV, and 47 with cluster JT, from the OAI, during a 72-month follow-up period. The incidence of knee OA during this period (n = 39) was radiographically established when Kellgren-Lawrence (KL) score increased from < 2 at recruitment, to ≥ 2 at the end of 72 months of follow-up. Multivariate analysis using binary logistic regression was performed to assess PBL telomere loss and mtDNA haplogroups as associated risk factors of incidence of knee OA. Results: Carriers of cluster HV showed knee OA incidence twice that of the JT carriers (n = 30 vs 9). The rate of PBL telomere loss was higher in cluster HV carriers and in individuals with incident knee OA. Multivariate analysis showed that the dynamics of PBL telomere shortening can be a consistent risk marker of knee OA incidence. Subjects with nonincident knee OA showed a slower telomere loss than those with incident knee OA; the difference was more significant in carriers of cluster JT than in HV. Conclusion: An increased rate of telomere loss in PBLs may reflect a systemic accelerated senescence phenotype that could be potentiated by the mitochondrial function, increasing the susceptibility of developing knee OA.Instituto de Salud Carlos III; PI17/01987Instituto de Salud Carlos III; PI16/02124Xunta de Galicia; IN607A 2017/1

    Association between xerostomia, oral and general health, and obesity in adults. A cross-sectional pilot study

    Get PDF
    The objective of this study was to analyse the association between oral and general health variables and obesity indicators with the sensation of dry mouth or xerostomia as evaluated on the Xerostomia Inventory (XI). A total of 354 randomly selected subjects participated in this cross-sectional pilot study and completed an anonymous questionnaire. Anthropometric, clinical, and xerostomic variables were evaluated. Kruskal-Wallis, ANOVA and Bonferroni test were used for multiple comparisons. ROC curves and multinomial logistic regression were used to determine the (OR) risk of xerostomia. A total of 30.7 % of respondents reported xerostomia based on XI. The dry mouth question, the XI taken as a ?gold standard?, showed a diagnostic sensitivity of 70.37 %, and a specificity of 83.27 % (AUC=0.768, p<0.001). Logistical regression showed the highest xerostomia OR was associated to patients with bad self-perceived health, 6.31 (CI 95% 2.89-13.80, p<0.001). In the model adjusted for tooth mobility, bone or respiratory diseases, and the consumption of anxiolytics and antidepressants, the OR was 3.46 (CI 95% 1.47-8.18, p=0.005). a high prevalence of xerostomia was found in this cross-sectional pilot study, which was significantly more frequent in women, and increased with age. Xerostomia was associated to several systemic diseases, psychological conditions, and oral functional disorders such as tooth mobility. These preliminary results can serve as the basis for developing guidelines for the application of innovative measures designed to improve the quality of life of individuals with xerostomia

    Association of Accelerated Dynamics of Telomere Sequence Loss in Peripheral Blood Leukocytes With Incident Knee Osteoarthritis in Osteoarthritis Initiative Cohort

    Get PDF
    [Abstract] Osteoarthritis (OA) is a chronic degenerative joint disease, being the main cause of laboral inability. Decreased telomere size in peripheral blood leukocytes (PBL) has been correlated with age-related pathologies, like knee OA. In a dynamic approach, telomere-qPCR was performed to evaluate the relative percentage of PBL telomere loss after a 6-year follow-up, in 281 subjects from the prospective osteoarthritis initiative (OAI) cohort. A radiological Kellgren-Lawrence (KL) grade ≥ 2 was indicative of knee OA. Individuals with knee OA at recruitment (n = 144) showed a higher PBL telomere loss after 6 years than those without knee OA at baseline (n = 137; p = 0.018). Moreover, individuals that developed knee OA during the follow-up (n = 39) exhibited a higher telomere loss compared to those that remained without OA (n = 98; p < 0.001). Logistic regression analysis showed that PBLs telomere loss was not significantly associated with knee OA at recruitment, but behaves as an independent risk factor associated with incidence after follow-up (OR: 1.043; p = 0.041), together with maximum KL grade (OR: 3.627; p = 0.011), body mass index-BMI (OR: 1.252; p < 0.001) and WOMAC-index (OR: 1.247; p = 0.021), at recruitment. The telomere decay in PBLs is faster in individuals with incident knee OA, possibly reflecting a systemic-global accelerated aging that enhances the cartilage degeneration.The work was supported by grants PI17/01987 and PI16/02124 from Fondo de Investigaciones Sanitarias (FIS), Instituto de Salud Carlos III, Spain, a part of the National Plan for Scientific Program, Development and Technological Innovation, 2013–2016, and the ISCIII-General Subdirection of Assessment and Promotion of Research-European Regional Development Fund (FEDER) ‘A way of making Europe’, and grant IN607A 2021/07 from Xunta de Galicia.Xunta de Galicia; IN607A 2021/0
    corecore