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ABSTRACT 

Neural tracing studies have revealed that the rat medial and lateral septum are targeted by 

ascending projections from the nucleus incertus, a population of tegmental GABA neurons. 

These neurons express the relaxin-family peptide, relaxin-3; and pharmacological modulation 

of relaxin-3 receptors in medial septum alters hippocampal theta rhythm and spatial memory. 

In an effort to better understand the basis of these interactions, we have characterized the 

distribution of relaxin-3 fibers/terminals in relation to different septal neuron populations 

identified using established protein markers. Dense relaxin-3 fiber plexuses were observed in 

regions of medial septum containing hippocampal-projecting choline acetyltransferase 

(ChAT)-, neuronal nitric oxide synthase (nNOS)- and parvalbumin (PV)- positive neurons. In 

lateral septum (LS), relaxin-3 fibers were concentrated in the ventrolateral nucleus of rostral 

LS and the ventral nucleus of caudal LS, with sparse labeling in the dorsolateral- and medial- 

nuclei of rostral LS, dorsal nucleus of caudal LS, and ventral portion nuclei. Relaxin-3 fibers 

were also observed in the septofimbrial and triangular septal nuclei. In the medial septum, we 

observed relaxin-3 immunoreactive contacts with ChAT-, PV- and glutamate decarboxylase-

67-positive neurons that projected to hippocampus; and contacts between relaxin-3 terminals 

and calbindin- and calretinin-positive neurons. Relaxin-3 co-localized with synaptophysin in 

nerve terminals in all septal areas, and ultrastructural analysis revealed these terminals were 

symmetrical and contacted spines, somata, dendritic shafts, and occasionally other axonal 

terminals. These data predict this GABA/peptidergic projection modulates septohippocampal 

activity and hippocampal theta rhythm related to exploratory navigation, defensive and 

ingestive behaviors, and responses to neurogenic stressors. 

 

INDEXING TERMS: nucleus incertus; relaxin-3; septohippocampal system; stress; theta 

rhythm 
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INTRODUCTION 

Arousal neural pathways of the brain are associated with modulation of behavior in 

accordance with environmental requirements and a key node in the regulation of arousal is the 

forebrain septal area. Ascending connections from the medial septum to the hippocampus are 

proposed to provide ‘pacemaker’ control of hippocampal theta rhythm (Vertes and Kocsis, 

1997; Hangya et al., 2009), which may underpin goal-oriented behavior (Vinogradova, 1995) 

and plastic changes occurring during the formation of cognitive maps (O'Keefe, 1993); 

whereas descending projections from the lateral septum target a wide variety of subcortical 

circuits related to visceral and metabolic functions, ranging from aggression, social and sexual 

behavior to circadian rhythms (Albert and Chew, 1980; Risold and Swanson, 1997a; 

Veenema and Neumann, 2007). 

The septal area plays a central role in controlling hippocampal function, and the 

importance of the medial septum for ‘pacemaking’ of hippocampal theta rhythm was noted in 

early studies (Pestche and Stumpf, 1962; Andersen et al., 1979; Vinogradova, 1995). This 

view was strengthened by more recent EEG recordings in freely-moving rats that 

demonstrated that the integrity of the entire medial and lateral septum-hippocampal network 

is critical for the generation of theta rhythm (Nerad and McNaughton, 2006). There has also 

been a consensus over many years that the different types of neurons in the septal area play 

specific roles in generating theta synchrony, with slow-firing cholinergic neurons facilitating 

hippocampal firing, and parvalbumin GABAergic neurons that innervate GABAergic 

hippocampal interneurons driving disinhibition of pyramidal or granule cell inhibition, 

allowing hippocampal synchrony (Freund and Antal, 1988; Freund and Gulyas, 1997; Toth et 

al., 1997a; Wu et al., 2000), although more recent studies have questioned the relative 

importance of different neuron populations in awake animals (e.g. Simon et al., 2006). 

Neural tract-tracing studies in the rat by our laboratory and others have demonstrated that 

the septal area is targeted by ascending projections arising from the nucleus incertus (Goto et 

al., 2001; Olucha-Bordonau et al., 2003). Neurons of the nucleus incertus contain GABA and 

a range of peptides, such as cholecystokinin, neurotensin, neuromedin B and atrial natriuretic 

peptide (Kubota et al., 1983; Olucha-Bordonau et al., 2003; Ryan et al., 1995) (see Ryan et 

al., 2011 for review). Recent studies have revealed that a large population of nucleus incertus 

neurons express high levels of the peptide, relaxin-3 (RLN3), which is primarily expressed in 

this region, in addition to smaller adjacent tegmental and midbrain cell groups (Burazin et al., 

2002; Bathgate et al., 2003; Tanaka et al., 2005; Ma et al., 2007). The nucleus incertus 

provides a distinct pattern of ascending projections to raphé nuclei, periaqueductal grey, 

Page 4 of 80

John Wiley & Sons

Journal of Comparative Neurology



5 

supramammillary nucleus, several hypothalamic nuclei, midline intralaminar nuclei, 

habenula, amygdala, hippocampus, the septal area and the prefrontal cortex (Goto et al., 2001; 

Olucha-Bordonau et al., 2003). This pattern of efferents overlaps extensively with the 

forebrain distribution of RLN3-containing nerve fibers (Tanaka et al., 2005; Ma et al., 2007). 

The native receptor for RLN3 is G-protein coupled receptor-135 (GPCR135) (Liu et al., 

2003) or ‘RXFP3’ (Bathgate et al., 2006) and the regional topography of RXFP3 in rat brain 

is largely consistent with the distribution of RLN3-positive fibers (Ma et al., 2007). 

The strong connections of the nucleus incertus with a number of brain areas involved in 

brainstem-diencephalic modulation of hippocampal theta rhythm, such as the median raphé, 

supramammillary nucleus and the medial septum (Vertes et al., 1993a; Vertes and Kocsis, 

1997) lead us to hypothesize a role for the nucleus incertus in theta rhythm activation. We 

subsequently demonstrated that stimulation of nucleus incertus in urethane-anesthetized rats 

increased theta and decreased delta activity of the hippocampus, whereas, electrolytic lesion 

of the nucleus incertus abolished hippocampal theta induced by stimulation of the nucleus 

reticularis pontis oralis (RPO) (Nunez et al., 2006), a key brainstem generator of 

hippocampal theta rhythm (Vertes, 1981; Vertes, 1982; Nuñez et al., 1991; Vertes et al., 

1993b; Vertes and Kocsis, 1997). The hippocampal area in which field potentials were 

recorded receives only sparse inputs from the nucleus incertus, and it was concluded that the 

influence of the nucleus incertus on hippocampal theta rhythm was most likely mediated by 

its effects within the medial septum and/or other lower brain structures. In fact, the nucleus 

incertus is presumed to be the major relay station of RPO inputs to the medial septum (and 

hippocampus), as there are no direct projections from the RPO to hippocampus (Teruel-Marti 

et al., 2008). Additionally, RPO stimulation results in theta synchronization in the 

hippocampus and nucleus incertus, at the same frequency and with a high degree of coherence 

(Cervera-Ferri et al., 2011). Furthermore, because the nucleus incertus is a RLN3 locus in the 

brain, we hypothesized that RLN3 might contribute to these effects. Consistent with the 

presence of RLN3 and RXFP3 in the medial septum, injections of a selective RXFP3 agonist 

peptide (R3/I5; Lui et al., 2005) into this area increased theta activity of the hippocampal field 

potential in urethane-anesthetized rats, which was significantly attenuated by prior injection 

of a selective RXFP3 antagonist peptide, R3(B∆23-27)R/I5 (Kuei et al., 2007) (Ma et al., 

2009b). R3/I5 infusion into the medial septum also increased hippocampal theta in rats in a 

familiar home cage environment, whereas R3(B∆23-27)R/I5 decreased hippocampal theta in 

rats exploring a novel enriched context (Ma et al., 2009b). These data support a significant 

contribution of nucleus incertus and RLN3 inputs to the septum in regulating a fundamental 
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brain activity and associated complex behaviors, and therefore characterization of the 

anatomical and cellular interactions between these inputs and their targets is required. 

The goal of the current study, therefore, was to map the distribution of RLN3 positive-

fibers throughout the rat septum in relation to particular ‘landmark’ neuron populations. This 

was achieved in a series of double-labeling experiments using a characterized RLN3 

antiserum and antisera for established protein markers expressed by neurons in the septal area. 

We examined whether RLN3-positive fibers made close contacts with the major septal neuron 

types in triple- and quadruple-labeling studies combined with confocal microscopy analysis. 

We also examined the co-localization of RLN3 staining with that for the presynaptic marker, 

synaptophysin (Jahn et al., 1985) to assess the presence of RLN3 within synapses in the 

septum. Finally, we conducted ultrastructural analyses of RLN3-positive synapses in the 

septal area using electron microscopy. The data obtained provide strong anatomical evidence 

for a role of RLN3 in modulating the activity of specific neurons in the septum that have 

direct connections with the hippocampus, which may underlie the effects of relaxin-3/RXFP3 

signalling on hippocampal theta rhythm and associated complex behaviors. 
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MATERIALS AND METHODS 

Animals 

Male Sprague-Dawley rats (300-400 g, n = 22) were used in this study. All protocols 

were approved by the Animal Ethics Committees of the Universitat de València (Spain), 

Universidad Autónoma de Madrid (Spain), and Howard Florey Institute (Australia). All 

procedures were in line with directive 86/609/EEC of the European Community on the 

protection of animals used for experimental and other scientific purposes and the guidelines 

on animal welfare issued by the National Health and Medical Research Council of Australia. 

Details of the experimental protocols employed are provided below (see Table 1). 

Tracer injections 

Rats were anesthetized with ketamine (Imalgene 55 mg/kg i.p.) and xylacide (xilagesic 

20 mg/kg i.p.) and trephine holes were drilled in the skull. Anterograde tracer injections into 

the nucleus incertus were made using 40 µm I.D. glass micropipettes (coordinates from 

bregma: AP -9.6 mm, ML 0 ± 0.2 mm and DV 7.4 mm). For anterograde tracing, 15% 

miniruby (mR, 10 kD biotinylated dextran amine rhodamine-labeled, Cat No. D-3312, 

Molecular Probes, Paisley, UK) dissolved in 0.1M PB, pH 7.6 was iontophoretically delivered 

into the nucleus incertus by passing a positive current of 1 µA, 2 sec on, 2 sec off over 10 

min. The micropipette was left in place for an additional 10 min before withdrawal. Injections 

of 4% Fluorogold retrograde tracer dissolved in dH2O (FG, 5-hydroxystabilamide (Cat No 

80014, Biotium, Hayward, CA, USA), were made into the hippocampus (coordinates from 

bregma: AP -5.4 mm, ML 5 mm, DV 5 mm) and the anterior hypothalamus (coordinates from 

bregma: AP -1.8 mm, ML 1 mm, DV -8.8 mm). Volumes of 0.04-0.08 µl of 4% FG in dH2O 

were injected using a 40 µm I.D. glass micropipette attached to an IM-300 microinjector 

(Narishige, Tokyo, Japan) over 10 min. After injections, the surgical wound was sutured and 

rats were injected with Buprex (0.05 mg/kg, i.p., Lab Esteve, Barcelona, Spain) for analgesia. 

Rats were then allowed to recover for at least 7 days, prior to further processing. 

Brain fixation and sectioning 

For analysis of tracing studies, rats were deeply anesthetized with Nembutal (150 mg/kg 

i.p., Euthalender, Barcelona, Spain) and transcardially-perfused with saline (250 ml) followed 

by fixative (4% paraformaldehyde in 0.1M PB, pH 7.4) for 30 min (~500 ml). Brains were 

dissected and immersed in the same fixative for 4 h at 4ºC. They were then incubated in 30% 

sucrose in 0.01 M PBS pH7.4 for 48 h at 4ºC. The brains were cut coronally at the level of the 

flocculi by using a rat’s brain methacrylate matrix in order to obtain reliable sections 
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displaying equal orientation. Coronal sections (40 µm) were collected using a freezing slide 

microtome (Leica SM2010R, Leica Microsystems, Heidelberg, Germany). For each brain, 6 

series of sections were obtained and collected free-floating in 0.01M PBS. 

For electron microscopy, rats were transcardially-perfused with saline (250 ml) followed 

by fixative (4% paraformaldehyde, 15% saturated picric acid and 0.2% glutaraldehyde in 

0.1M PB, pH 7.4) for 30 min (~500 ml). Brains were dissected and placed into cold 0.1M PB, 

pH7.4 containing 0.02% sodium azide. Coronal blocks (2 mm) were cut with an acrylic brain 

matrix template and each block was further sectioned at 50 µm with a Leica 2000 Vibratome 

(Leica Microsystems). From each block, 6 series of sections were obtained. 

Antibody characterization 

A number of characterized antisera were used in these studies (see Table 2).  

The goat polyclonal choline acetyltransferase (ChAT) antiserum (Cat No. AB144P, 

Chemicon, Temacula, CA, USA) stains a single band of 68-70 kD molecular weight on 

Western blot analysis of mouse brain lysate (manufacturer's technical data). Its antigen 

specificity has been determined by preadsorption with the appropriate purified protein. There 

was no labeling when the antisera dilution was preabsorbed with human placental ChAT (fig 

1 in Rico and Cavada, 1998).  

The neuronal nitric oxide synthase (nNOS) antibody (Cat No. N2280, Sigma, St Louis, 

MO, USA) is a mouse IgG1 monoclonal and labels a band of 155 kD by western blot of rat’s 

cortical cultured neurons, which almost disappears when nNOS expression is downregulated 

(Dhar et al., 2009). We observed a distribution pattern and cellular morphology of nNOS-

positive neurons in medial septum similar to that reported earlier (Peng et al., 1994). 

The calretinin (CR) antibody (Cat No. 6B3, Swant, Bellinzona, Switzerland) is a mouse 

monoclonal antibody which recognizes a single band of 29 kDa in Western blots of different 

vertebrate species including mice and rats (manufacturer’s data) and does not produce any 

specific staining in immunohistochemical studies in CR knockout mice (Schiffmann et al., 

1999).  

The calbindin (CB-28kD) antibody (Cat No. 300, Swant) is a mouse IgG1 (Celio et al., 

1990). It recognizes a single band of 28 kDa in Western blots of different vertebrate species 

including mice and rats (manufacturer’s data). It labels a subpopulation of neurons in normal 

mouse brain, but not brain sections from CB-28 knockout mice (Airaksinen et al., 1997). 

The monoclonal parvalbumin (PV) antibody (Cat No. 235, Swant) was produced by 

hybridization of mouse myeloma cells with spleen cells from mice immunized with PV 
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purified from carp muscles (Celio et al., 1988). It recognized a single 12 kD protein (pI 4.9) 

on a 2-dimensional immunoblot of rat cerebellar tissue; values identical to those expected for 

purified PV (Celio et al., 1988); and labeled a subpopulation of neurons in normal brain, but 

did not stain the brain of PV knockout mice  (Raymackers et al., 2003). 

The antibody against glutamate decarboxylase-67 (GAD-67), (Cat No. MAB5406, 

Chemicon) recognizes a single band of 67 kDa on Western blot from rat brain lysate (Fong et 

al., 2005) (Kay et al., 2011). The signal was reduced in a Western blot of striatum from a 

heterozygous GAD67 knockout mouse, compared to a wild-type mouse; and immunostaining 

was also reduced in the central nervous system of this GAD67 mutant (Heusner et al., 2008). 

The distribution pattern of GAD67 positive neurons we observed in the medial septum was 

similar to that described by (Bassant et al., 2005). 

The tyrosine hydroxylase (TH) antibody (clone TH-2; Sigma) was raised in mouse. 

Indirect immunoblot analysis of proteins obtained from rat PC-12 pheochromocytoma 12 

cells recognizes a single band of approximately 60kDa corresponding to rat TH 

(manufacturer's technical information). The pattern of TH staining in the septal area was 

identical to that reported earlier (Risold and Swanson, 1997). 

The synaptophysin antibody clone SVP-38 (Sigma-Aldrich, St. Louis, MO; S5768) 

recognizes a 38-kDa molecular weight band in Western blot analysis of presynaptic vesicles 

(Wheeler et al., 2002; Morris et al., 2005; Flores-Otero et al., 2007). This antibody fails to 

produce specific immunolabeling in brain tissue from synaptophysin-deficient mice (Eshkind 

and Leube, 1995). 

The polyclonal relaxin 3 (RLN3) antiserum, was raised against a synthetic peptide 

equivalent to amino acid residues 85-101 of the pro-RLN3 peptide (Ma et al., 2007). These 

residues are contained in the C-peptide region and are identical in mouse and human, with one 

amino acid mismatch from the rat sequence (Bathgate et al., 2002; Burazin et al., 2002). The 

peptide was conjugated through a C-terminal cysteine to keyhole limpet hemocyanin and 

injected subcutaneously with Freund’s complete adjuvant. Bleeds were tested using dot 

blotting for immunoreactivity with the peptide epitope and mouse pro-RLN3 (Ma et al., 

2007). The antiserum was then purified using an affinity column. No staining was seen in 

mice in which the relaxin-3 gene had been deleted (Ma et al., 2007; Smith et al., 2010).  

Finally, the specificity of the Fluorogold antibody (Biotium) was verified by the presence 

and absence of labeling in rats injected or not injected with FG, respectively.  
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Double immunohistochemistry for RLN3 and CB-28kD, PV, TH, nNOS, ChAT or FG 

For analysis of RLN3 in nerve fibers in relation to other markers of septal neurons, a 

double-label immunohistochemistry protocol was used. In cases where primary antibodies 

were raised in different host species (rabbit and mouse), a combination of both antibodies in a 

single primary antibody incubation was used. In cases where primary antibodies were from 

the same host species, sequential primary and secondary antibody incubations was separated 

by overnight rinsing. For single primary antibody incubations, sections were rinsed twice in 

Tris-buffered 0.05 M saline pH 8.0 (TBS) and transferred to blocking solution (4% normal 

donkey serum (NDS), 2% bovine serum albumin (BSA) and 0.2 % Triton X100 in TBS) for 1 

h at room temperature (RT). Sections were then transferred to incubation media containing 

1:2,500 rabbit anti-RLN3 (Ma et al., 2007) and either 1:5,000 mouse anti-PV (Swant), 

1:5,000 mouse anti-CB-28kD (Swant), 1:2,500 mouse anti-CR (Swant), 1:10,000 mouse anti-

tyrosine hydroxylase (Sigma), 1:500 mouse anti-nitric oxide synthase (Sigma) or 1:1,000 goat 

anti-ChAT (Chemicon) in TBS containing 2% NDS, 2% BSA and 0.2% Triton X100 for 48 h 

at 4ºC. RLN3 and other neuronal markers were then revealed consecutively (see Table 2). For 

RLN3, sections were rinsed twice in TBS and incubated in biotinylated secondary antibody 

(1:200 biotinylated donkey anti-rabbit; Cat No. 711-065-152, Jackson Immunoresearch, West 

Grove, PA USA) for 2h at room temperature. Sections were then rinsed twice in TBS and 

transferred to 1:100 ABC (Vectastain, Cat No. PK-6100; Vector Laboratories, Burlingame, 

CA, USA). After rinsing (2 × TBS) the immunolabeling was revealed as a black reaction 

product by immersing the sections in 0.025% DAB, 0.5% ammonium nickel sulfate, 0.0024% 

H2O2 in Tris HCl, pH 8.0. Sections were then rinsed for at least 2 h. Septal cell markers were 

then revealed by incubation in appropriate biotinylated secondary antibody (1:200 

biotinylated donkey anti-mouse, Cat No. 715-065-150, Jackson; or 1:200 donkey anti-goat, 

Cat No. 705-065-147, Jackson) for 1 h. Sections were then rinsed twice in TBS and incubated 

in 1:100 ABC (Vector) for 1 h. After rinsing (2 × TBS) the immunolabeling was revealed as a 

brown reaction project by incubating the sections in 0.025% DAB, 0.0024% H2O2 in Tris 

HCl, pH 7.6. Following several rinses in 0.01M PBS, sections were mounted on chrome alum 

gelatin-coated slides, air-dried, dehydrated with graded ethanol, cleared with xylene, and 

coverslipped with DPX (Sigma). 

For double-RLN3/FG staining, sections were rinsed twice in 0.05 M TBS, pH 8.0 and 

transferred to blocking solution (4% NDS, 2% BSA and 0.2 % Triton X100 in TBS) for 1 h at 

RT. Sections were then transferred to incubation media containing 1:2,500 rabbit anti-RLN3 

in TBS containing 2% NDS, 2% BSA and 0.2% Triton X100 for 48 h at 4ºC. Sections were 
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then rinsed twice in TBS and incubated in biotinylated secondary antibody (1:200 biotinylated 

donkey anti-rabbit; Jackson). Sections were rinsed twice in TBS and transferred to 1:100 

ABC (Vectastain, Cat No. PK-6100, Vector). After rinsing (2 × TBS), immunolabeling was 

revealed by immersing the sections in 0.025% DAB, 0.5% ammonium nickel sulfate, 

0.0024% H2O2 in Tris HCl, pH 8.0. After this first reaction, sections were rinsed overnight at 

4ºC. The next day, sections were incubated with rabbit anti-FG (Chemicon) in TBS 

containing 2% NDS, 2% BSA and 0.2 % Triton X100 overnight at RT. The next day, after 24 

rinses in TBS, sections were incubated in biotinylated secondary antibody (1:200 biotinylated 

donkey anti-rabbit; Jackson). Sections were then rinsed (2 × TBS and transferred to 1:100 

ABC (Vectastain). After rinsing (2 × TBS), immunolabeling was revealed by immersing the 

sections in 0.025% DAB, 0.0024% H2O2 in Tris HCl, pH 7.6. Following several rinses in 

0.01M PBS, sections were mounted on chrome alum gelatin-coated slides, air-dried, 

dehydrated with graded ethanol, cleared with xylene and coverslipped with DPX (Sigma). 

Immunofluorescent detection of neuronal markers in the medial septum 

For detection of medial septal marker proteins, sections were rinsed 2 × 10 min and 

immersed in a blocking media of TBS containing 4% NDS, 2% BSA and 0.1% Triton X-100 

for 1 h at RT. Sections were then incubated in primary antibody solution containing 1:1,250 

rabbit anti-RLN3 and either 1:2,500 mouse anti-PV (Swant), 1:2,500 mouse anti-CB-28kD 

(Swant), 1:1,250 mouse anti-CR (Swant), 1:250 mouse anti-nitric oxide synthase (Sigma), 

1:500 goat anti-ChAT (Chemicon), 1:1,000 mouse anti-GAD67 (Chemicon) or 1:1,000 mouse 

anti-synaptophysin (Sigma) in TBS containing 2% NDS, 2% BSA and 0.2% Triton X100 for 

48 h at 4ºC. Sections were then rinsed (3 × TBS) and incubated in 1:200 FITC-labeled donkey 

anti-rabbit (Cat No. 711-095-152, Jackson) and 1:200 Texas Red-labeled donkey anti-mouse 

(Cat No. 715-075-150, Jackson); for quadruple labeling 1:200 Cy5-labeled donkey anti-

mouse (Cat No. 715-175-020, Jackson) or 1:200 Cy5-labeled donkey anti-goat (Cat No. 705-

175-003, Jackson) in TBS. (Texas Red-labeled secondary antibody was not used in mR-

injected cases). Sections were then briefly rinsed in 0.01M PBS and mounted on chrome-alum 

gelatin-coated slides, air-dried, dehydrated in graded ethanol and coverslipped with DPX. 

RLN3 immunocytochemistry for electron microscopy 

Following vibratome sectioning aldehydes were reduced by immersing sections in 1% 

NaBH4 in 0.1M PB for 15 min. Sections were then rinsed 6 × 5 min in 0.1M in PB. Sections 

were cryoprotected by immersion in a solution of 10 % glycerol, 25% sucrose in 0.05M PB at 

pH 7.4 for 1 h and passed through 3 cycles of freeze-thawing with liquid nitrogen for 2-3 sec 
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to improve reagent penetration into the tissue during the histochemical reactions. Sections 

were then rinsed in 0.1M PB and incubated in blocking solution (4% NDS, 2% BSA in 0.1M 

PB) for 1 h at RT. Sections were then transferred to incubation media containing 1:1,250 

rabbit anti-RLN3 in PB for 72 h at 4ºC. After incubation, sections were rinsed twice in PB 

and incubated in biotinylated secondary antibody (1:200 biotinylated donkey anti-rabbit, 

Jackson). Sections were then rinsed twice in PB and incubated in 1:100 ABC (Vectastain). 

After rinsing (2 × PBS), sections were revealed with 0.015% DAB, 0.004% H2O2 in 0.1M PB 

for 20 min. Sections were then rinsed 4 × 10 min in 0.1 M PB. Osmication was performed by 

immersing sections in 1% osmium tetroxide (Sigma), 7% glucose in 0.1M PB for 1 h and 

rinsed 3 × 10 min in 0.1M PB. Inclusion was conducted in graded series of ethanol (30% 2 × 

3 min, 50% 2 × 10 min, 70% 2 × 10 min, 2% uranyl acetate in 70% ethanol 75 min, 70% 2 × 

3 min, 96% 2 × 10 min, 100% 3 × 10 min). Sections were then immersed in propylene oxide 

(2 × 8 min) and embedded in Durcopan resin (Fluka, Buchs, Switzerland) overnight at RT. On 

the following day, sections were sandwiched between two acetate sheets and embedded in the 

resin for 72 h at 60ºC. Semi-thin sections were obtained with an Ultracut ultramicrotome 

(Leica Microsystems) and selected areas were re-sectioned into ultrathin sections and 

examined with a Jeol JEM-1010 electron microscope (Jeol, Tokyo, Japan). Images were 

captured with a MegaView III digital camera and the AnalySIS software (Olympus, Münster, 

Germany). 

Immunohistochemistry analyses 

DAB immunohistochemistry was studied using a Nikon Eclipse E600 microscope with a 

DMX2000 digital camera (Nikon, Tokyo, Japan) and maps were constructed using a camera 

lucida tube attached to a Zeiss Axioskop microscope (Zeiss, Munich, Germany) (Fig. 1). 

Drawings were made with 20× and 40× magnification, scanned and reduced to the final size. 

As an example, a 40× construction of a map of a section double stained for RLN3 and 

CB28kD is illustrated in Fig 1A. Photomicrographs of a number of specific areas within the 

section illustrating the comparative staining are also provided (Fig. 1B-F). Confocal 

immunofluoresence was analyzed with a laser confocal scan unit TCS-SP2 equipped with 

argon and helio-neon laser beams attached to a Leica DMIRB inverted microscope (Leica 

Microsystems). Quadruple scans were made to identify FG, mR/Texas red, FITC and Cy5. 

Wavelengths for FG excitation were 351 nm and 364 nm and for emission 382-487 nm; 

mR/Texas red wavelength for excitation was 433 nm and for emission 560-618 nm; FITC 

wavelength of excitation was 488 nm and for emission was 510-570 nm; Cy5 wavelength of 
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excitation was 633 nm and for emission 644-719 nm. Serial 1-micron sections of captured 

images were obtained in the Z-plane and a ‘maximal projection’ was generated with Leica 

Confocal Software, Version 2.61. 
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RESULTS 

RLN3-containing nerve fibers were observed in abundance in the medial and lateral 

septum. In a series of comparative staining experiments, we documented their distribution in 

the coronal plane relative to retrograde labeling with Fluorogold (FG) from the hippocampus 

and anterior hypothalamus and anterograde labeling of nucleus incertus projections to the 

septal area with miniruby (Figs 2-6), as well as to a number of septal neuron populations 

labeled by protein/enzyme markers (see Figs 4 and 7-15). For neuronal markers we used the 

calcium-binding proteins, parvalbumin (PV), calbindin-28kD (CB-28kD) and calretinin (CR); 

and the enzymes, choline acetyltransferase (ChAT), neuronal nitric oxide synthase (nNOS) 

and tyrosine hydroxylase (TH). We made a semi-quantitative estimation of the density of 

RLN3 fibres relative to markers for the medial septum (Table 3) and the lateral septum (Table 

4). We also assessed the co-localization of RLN3 staining with that for the presynaptic marker 

synaptophysin to assess the presence of RLN3 within synapses in the septum (Figs 16 and 

17). Finally, we performed ultrastructural analyses of RLN3-positive synapses in the septal 

area using electron microscopy (Fig. 18). 

The septal area was divided into five coronal levels according to cytoarchitectonic and 

external landmarks, and labeling was summarized on maps at each of these levels. Level 1 

contained the insula of Calleja magna (~bregma 1.00 mm); at level 2, a boundary appeared 

between the medial septum and the lateral septum (~bregma 0.75 mm); at level 3, the ventral 

division of the lateral septum was evident (~bregma 0.50 mm); at level 4, the fornix appeared 

at the dorsal tip of the medial septum (~bregma 0.30 mm); and at level 5, the fibers of the 

anterior commissure crossed to the contralateral side (~bregma 0.05 mm). 

Cytoarchitectonics 

In general, we have adopted the parcellation of the lateral septum described by Risold and 

Swanson (1997b) and the description of the medial septum and posterior septal area by Jakab 

and Leranth (1995). Accordingly, the lateral septum is composed of three main portions - 

caudal (LSc), rostral (LSr) and ventral (LSv). In turn, the rostral portion is composed of three 

nuclei - the dorsolateral (LSr-dl), ventrolateral (LSr-vl) and medial (LSr-m). The caudal 

division also consists of dorsal (LSc-d) and ventral (LSc-v) nuclei. As there are no clear 

borders between these nuclei, several neuronal markers were used to establish approximate 

boundaries. In the original work by Risold and Swanson (1997b), additional subnuclei could 

be delineated within the dorsolateral and ventrolateral nuclei using the specific markers, 

calcitonin gene-related peptide or vasopressin. We discovered that CB-28kD and TH also 
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provide landmarks for the basis of further subdivisions. In our descriptions however, we have 

adopted general divisions of the lateral septal area (Risold and Swanson, 1997b). 

The medial septum can be divided cytoarchitectonically into vertical (vMS) and 

horizontal (hMS) portions. The vMS corresponds to both the medial septum and the vertical 

limb of the diagonal band and the hMS corresponds to the horizontal limb of the diagonal 

band. In addition, the medial septum consists of hippocampal-projecting neurons and 

additional divisions can be delineated using other landmarks. For example, staining for CR-

immunoreactivity revealed an “inverted V-shaped” region of neurons and processes capping 

the dorsolateral part of the medial septum (data not shown).  

In the posterior part of the septal area, we observed densely packed CR-positive neurons in 

the triangular septal nucleus. In addition, rows of CR-labeled neurons appeared between the 

fimbria fornicis, which we have identified as the septofimbrial nucleus. 

Tracer injections 

In order to obtain a better delineation between medial and lateral septum, we made two 

different retrograde tracer injections: one into the anterior hypothalamic area (Fig. 3A) that 

mainly labels neurons of lateral septal area (Fig. 3B,C); and the other into the hippocampus 

(Fig. 3D) that mainly produced retrogradely labelled neurons in the medial septum (Fig. 

3E,F). In both cases, large injections were made in order to obtain maximal retrograde-

labeling throughout the septal area. For the anterior hypothalamus, the maps constructed 

(MNC9 case) correspond to an injection centred in the posterior division of the anterior 

hypothalamic nucleus (Fig. 3A). Diffusion of the tracer also extended rostrally to the anterior 

hypothalamic nuclei and caudally to the tuber cinereum and anterior levels of the 

ventromedial hypothalamic nucleus. In cases of tracer diffusion to the anterior hypothalamic 

nuclei, retrograde labeling in the septal area was observed in rostral and ventral portions of 

the lateral septum. No retrograde labeling was obtained in the dorsal caudal lateral septal 

nucleus (Fig. 3C) and only disperse labeling was observed in the septofimbrial nucleus and 

triangular septal nucleus of the posterior septum. In addition, we observed a band of 

retrograde labeling in the lateral region of the medial septum (Fig. 3C) that continued 

ventrally towards the horizontal limb. Hippocampal FG injections were made in the ventral-

caudal area (Figs 2A,B and 3D) and others between the dorsal and ventral regions, and 

included the CA1, CA3 and dentate gyrus. In all cases, retrograde labeling was observed in 

the vMS (Fig. 3E,F). 
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Distribution of nucleus incertus and RLN3-positive afferents throughout the septal area 

The regional pattern of anterograde labeling of nerve axons/terminals in the septal area 

produced by miniruby injections into the nucleus incertus was similar to that observed after 

staining for RLN3-immunoreactivity, across all of the five coronal levels assessed (Figs 4 and 

5). These distributions overlapped the distribution of ChAT-labeled neurons in the medial 

septum (Fig. 4) and both the neurons retrogradely-labeled from the ventral hippocampus 

present in the medial septum (Fig. 5) and the neurons retrogradely-labeled from the anterior 

hypothalamus that were most abundant in the lateral septum (Fig. 6). At level 1, only 

dispersed fibers (RLN3 and mR-labeled nucleus incertus fibers) were present in the lateral 

septal region (Figs 4A and 5A). At levels 2, 3 and 4 the co-occurrence of ChAT and mR-

labeled fibers became more evident (Fig. 4B-D), as observed between hippocampal 

projections and RLN3-positive fibers (Fig. 5B-D). At levels 2 and 3, we observed a band of 

RLN3-positive fibers that ran parallel to the pial surface in the lateral septum, occupying the 

ventrolateral rostral lateral septum nucleus (LSr-vl) and the ventral caudal lateral septum 

nucleus (LSc-v) (Figs 4B,C and 5B,C). At level 4, two different groups of RLN3- and mR-

positive fibers were observed in areas corresponding to the vertical and horizontal portions of 

the medial septum, with an intervening gap corresponding to the anterodorsal preoptic 

nucleus (ADP) and basal substantia innominata (SIB) (Figs 4D and 5D). In the lateral septum, 

the pial band of RLN3/mR-fibers became more evident, spreading through the ventral caudal 

lateral septum nucleus (LSc-v) (Figs 4D and 5D), which contained dense retrograde-labelling 

from the anterior hypothalamus (Fig. 6D). At levels 4 and 5, we observed RLN3/mR-fibers 

running parallel to the fornix within the septofimbrial nucleus (SFi). In addition, some groups 

of fibers were present in the triangular septal nucleus (TS) (Figs 4D,E, 5D,E and 6D,E). 

Coronal level 1 (bregma +1.00 mm) 

The most rostral level examined was aligned with the insula of Calleja magna (~bregma 

1.00 mm), where a narrow cavity is present in the dorsal midline of the medial septum (vMS). 

The medial septum is clearly differentiated from the lateral septum as it contains a vertical 

strip of large neurons. The central lateral septum is occupied by the rostral portion, which in 

turn, contains three nuclei - the medial, dorsolateral and ventrolateral - that are dorsal to the 

insula of Calleja magna. The dorsal area is occupied by the caudal division of the lateral 

septum (LSc) and the ‘circular’ septohippocampal nucleus (Fig. 7A). RLN3-immunoreactive 

fibers were not observed in the LSc or in the septohippocampal nucleus; and the strongest 

RLN3-labeling occupied an area containing neurons retrogradely-labeled from the 
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hippocampus (Fig. 7B). PV-positive neurons were present in a more restricted region close to 

the midline (Fig. 7C), whereas CR-positive neurons were concentrated in a peripheral zone of 

the vMS (Fig. 7F). In contrast CB-28kD cells occupied a more extensive septal region 

comprising both MS and a narrow band just over the insula of Calleja (Fig 7E). 

Coronal level 2 (bregma +0.75 mm) 

At this level, a clear difference was observed between the cytoarchitectonic configuration 

of the medial and lateral septum, with a band of TH-positive processes between the two areas 

that corresponds to the medial rostral lateral septum nucleus (LSr-m). Lateral to the 

septohippocampal nucleus there was a band of loosely packed neurons corresponding to the 

caudal lateral septum, containing the dorsal (LSc-d) and ventral (LSc-v) nuclei. In the LSc-v, 

a plexus of RLN3-labeled fibers appeared to run just medial to the ventricular ependymus 

(Fig. 5B). The trapezoid area between the medial septum, LSc and accumbens shell was 

occupied by the LSr that contained three near continuous nuclei. The medial nucleus (LSr-m) 

contained TH-positive processes and was devoid of RLN3-labeled fibers and the dorsolateral 

nucleus (LSr-dl) also contained sparse RLN3-labeling. In contrast, groups of RLN3 fibers 

were observed near the accumbens shell in a region corresponding to the LSr-vl nucleus (Fig. 

8 D-F). 

In the medial septum, a high density of RLN3-labeled fibers was observed in the vertical 

and horizontal divisions, in areas containing hippocampal-projecting, ChAT-, PV- and nNOS- 

positive neurons (Fig. 8B-D). There was also an area of dense RLN3-labeling that overlapped 

a high density of CR-neurons in the dorsal vMS (Fig. 8E). In anterior hypothalamus-injected 

cases, a band of retrogradely-labeled neurons were located in lateral aspects of the medial 

septum, where a high density of RLN3-labeling was observed (Fig. 6B). 

Coronal level 3 (bregma +0.50 mm) 

At this level, we observed groups of neurons and moderate levels of RLN3-positive fibers 

between the fornix that occupied the dorsal aspects of the septal area between the corpus 

callosum and the dorsal tip of the medial septum. A high density of RLN3-labeled fibers was 

observed in the LSc-v nucleus located dorsolateral to the fornix. Lateral to the medial septum, 

the rostral portion of the lateral septum still contained the LSr-dl, LSr-m and LSr-vl nuclei. 

The LSr-m nucleus was characterized by TH-positive processes and neurons and scarce 

RLN3-labeling, as was the LSr-dl nucleus (Fig. 9C). In contrast, the LSr-vl nucleus contained 

a dense RLN3-plexus and CB-28kD-labeled cells (Fig. 9E). At this level, the LSv also 

contained scarce CB-28kD cells that formed a band adjacent to the bed nucleus of the stria 
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terminalis (BST), running diagonally from the ventral sulcus of the lateral ventricle to the 

medial septum. Scarce RLN3-labeling was observed in this nucleus. 

In contrast to sparse RLN3-labeling in the lateral septum, the medial septum contained 

uniform labeling in both the vertical and horizontal portions and in areas containing 

hippocampal projecting-, ChAT-, and PV-neurons (Fig. 9B-D) and nNOS- neurons (data not 

shown). Similar to labeling at level 2, it was clear that the dorsolateral area containing CR and 

CB-28kD neurons also contained dense RLN3-labeling (Fig. 9E,F). A band of hypothalamic-

projecting neurons was observed in a region between the lateral and medial septum (Fig. 9B). 

Coronal level 4 (bregma +0.30 mm) 

A region dorsal to the fornix corresponds to what classical nomenclature refers to as ‘the 

posterior septum’ (Jacab and Leranth, 1995). This area contained a central group of CR-

positive neurons that correspond to the triangular septal nucleus, and several groups of 

neurons located between the bundles of the fimbria fornicis that correspond to the 

septofimbrial nucleus. Capping the septofimbrial nucleus, the LSc appeared divided into 

dorsal and ventral nuclei (Fig. 10A). Some dispersed RLN3-labeling was observed in the 

triangular septal nucleus and RLN3-labeled fibers were also concentrated in groups of cells 

between the fimbrial bundles of the septofimbrial nucleus (Fig. 10D). Few fibers were 

observed in the LSc-d nucleus, in contrast to the high density present in the LSc-v nucleus. 

The latter appeared to form a lateral cap to the septofimbrial nucleus and continued ventrally 

to the dorsal tip of the medial septum. Many labeled fibers were observed to course laterally 

from the medial septum to the LSc-v and form a denser plexus. The LSv appeared as a band 

between the LSc-v and the BST and contained only a few dispersed RLN3-labeled fibers (Fig. 

6D). 

The medial septum at this level appeared split into a dorsal region corresponding to the 

caudal extension of the vMS, and a ventral region that corresponded to the hMS (Fig. 10A). 

The vMS contained clusters of hippocampal-projecting (Fig. 5D), and nNOS- (Fig. 10B), PV- 

(Fig. 10E) and ChAT- (data not shown) positive neurons. This area also contained 

hypothalamic-projecting neurons (Figs 6D and 10C), thus confirming overlap of populations 

of hippocampal- and hypothalamic-projection neurons in the medial septum. This region also 

contained a high density of RLN3-labeled fibers. Adjacent to the hMS, we observed two 

nuclei that correspond to the basal nucleus of the substantia innominata, which contained 

well-labeled, star-shaped PV and CB-28kD neurons and a low density of RLN3 fibers. The 
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anterior dorsal preoptic area located dorsomedially to the hMS also contained a low density of 

RLN3 positive fibers (Fig. 10 A-D). 

Coronal level 5 (bregma +0.0 mm) 

At this level, the septal complex split into two areas - the posterior septum and the hMS. 

As observed at level 4, in the posterior septum, which is composed of the triangular septal 

nucleus and septofimbrial nucleus (Fig. 11A), a high density of CR-positive neurons was 

present in the triangular septal nucleus (Fig. 11B) along with some dispersed, star-shaped PV-

positive neurons and scattered hypothalamic-projecting neurons (Fig. 11D). In this area, 

RLN3-labeled fibers were present amongst clusters of neurons of the septofimbrial nucleus 

(Fig. 11B-D) and were prominent in the LSc-v nucleus, which contained hypothalamic-

projecting neurons (Fig. 11C). 

A dense plexus of RLN3-labeled fibers was observed in the hMS amongst hippocampal-

projecting, and PV-, nNOS- and ChAT-positive neurons (Fig. 11 E-G). Sparse RLN3-labeled 

fibers were observed in the basal substantia innominata and anterior dorsal preoptic nucleus 

(Fig. 11E-G). 

Nucleus incertus/RLN3 targeting of identified neurons in the medial septum 

In these studies, we have determined the main targets of nucleus incertus (RLN3) 

projections within the medial septum, by employing anterograde-tracing analysis following 

mR injections into the nucleus incertus combined with RLN3 immunofluorescence; and 

RLN3 immunofluorescence combined with immunostaining of medial septum neuronal 

markers. We achieved restricted injections of mR into the nucleus incertus (Fig. 12A) and 

anterogradely-labeled fibers in the medial septum were generally found ipsilateral to the 

injection side with swollen and tufted terminal-like endings. Some of these fibers formed nets 

encapsulating ChAT-positive neurons (Fig. 12B) that also extended along primary dendrites. 

PV-positive neurons and processes were encapsulated by terminal-like labeled fibers (Fig. 

12C) and some CB-28kD-positive cells were also in close contact with anterogradely-labeled 

fibers (Fig. 12D). Confocal imaging revealed putative contacts between anterogradely-labeled 

mR fibers and PV-positive neurons, some of which were also retrogradely-labeled from the 

hippocampus (Fig. 12E-G). Confocal images also confirmed the occurrence of putative 

contacts between CB-28kD and CR-positive somata and/or processes with anterogradely-

labeled fibers from the nucleus incertus. 

The medial septum displayed the highest concentration of RLN3-positive fibers in all 

sections examined. Thus, we extended our investigations to determine the types of neurons in 

Page 19 of 80

John Wiley & Sons

Journal of Comparative Neurology



20 

the medial septum targeted by RLN3 fibers. Confocal analysis of the medial septum following 

FG injections into the hippocampus and staining for GAD67 and RLN3 revealed many 

RLN3-positive fiber contacts with GAD67-positive somata or processes. Some of these 

GAD67-positive neurons also displayed FG-labeling from hippocampal injections (Fig. 13A-

D). We also observed contacts with PV-positive neurons in the medial septum (Fig. 13E-F). 

RLN3 synaptic contacts were generally present on labeled somata and primary dendrites, 

although contacts with distal dendrites were also observed. In line with earlier reports, CB-

28kD did not co-localize with retrogradely-labeled cells from the hippocampus, although we 

observed contacts with RLN3 positive-fibers and in many cases, RLN3 fibers contained CB-

28kD (Fig. 14A-D). FG-labeled, hippocampal-projecting cells did not co-express CR, but 

some CR-positive neurons received contacts from RLN3-positive terminals and some RLN3-

positive fibers contained CR (Fig. 14E-H). 

In rats that received mR injections restricted to the nucleus incertus and FG injections in 

the caudal hippocampus, we employed a quadruple, immunofluorescence-labeling approach. 

Many mR-labeled fibers contained RLN3 immunofluorescence and over 50% of FG-labeled 

neurons contained ChAT immunostaining, with many of these neurons receiving contacts 

from mR and mR/RLN3-positive terminals (Fig. 15). 

Presence of relaxin-3 in synaptic terminals of the septum 

The topography of RLN3-immunopositive fibers in the septum was predominantly in a 

vertical orientation or slightly angled and running from the medial to the lateral septum. 

Confocal analysis of double immunofluorescent staining for RLN3 and the presynaptic 

marker, synaptophysin revealed a strong co-localization of RLN3 and synaptophysin in the 

medial septum (Fig. 16A-C see supl Fig.1 for red/green color blind). Synaptophysin-

immunoreactivity displayed a granular morphology, with unlabeled areas/spaces likely 

corresponding to neuronal somata or fiber bundles. Co-localization was also detected in the 

dorsal tip of the vMS between the fornix. Most RLN3-positive fibers in the LSr-dl also 

displayed synaptophysin immunofluorescence (Fig. 16 D-F, see supl Fig.1 for red/green color 

blind). 

In the posterior septal area, co-localization of synaptophysin and RLN3 immunoreactivity 

was also observed in the LSc-v nucleus (Fig. 17A-C, see supl Fig.2 for red/green color blind), 

while in the septofimbrial nucleus, synaptophysin and RLN3 immunoreactivity was 

colocalized in fibers located in rows between myelinated bundles (Fig. 17D-F, see supl Fig.1 

for red/green color blind). 
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Ultrastructural analyses of RLN3 terminals in the medial septum 

Earlier we described the ultrastructure of anterogradely-labeled terminals in the medial 

septum following mR injections into the nucleus incertus (Ma et al., 2009b). In this study, we 

examined RLN3-immunostaining in ultrathin sections of the medial septum using electron 

microscopy. RLN3-positive terminals generally contained 3-7 round, dense vesicles of ~100-

150 nm in diameter per section (Fig. 18A-D). The electrodense reaction product of the labeled 

terminal made it difficult to identify precisely the type of synaptic vesicles, but in all cases 

they were densely-packed. All RLN3-labeled terminals made symmetric contacts, with a 

regular synaptic cleft of 20 nm (Fig. 18A-D). Most RLN3 synapses were on dendritic shafts 

(Fig. 18C). 
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DISCUSSION 

In the current study, we confirmed the topography of the robust RLN3 projections to the 

medial septum, ventrolateral division of the rostral lateral septum, ventral division of the 

caudal lateral septum, and the septofimbrial and triangular septal nuclei of the rat. We have 

also demonstrated the existence of close contacts between RLN3-positive terminals and a 

range of neuronal types in the septal area, including ChAT-, PV-, CB-28kD-, CR-, and 

GAD67-positive neurons. Furthermore, we have identified symmetric contacts between 

RLN3 terminals and several postsynaptic structures. These data suggest RLN3 projections to 

the septum might contribute to two important functions - modulation of septohippocampal 

theta rhythm via actions within medial septum, and modulation of different aspects of 

motivated behaviors such as those related to ingestive and defensive behavior via actions in 

the ventrolateral division of the rostral lateral septum and/or ventral division of caudal lateral 

septum. Given the fact that RLN3 positive neurons in the nucleus incertus display CRH-R1 

receptors (Bittencourt and Sawchenko 2000), respond to CRH (Tanaka et al., 2005) and are 

activated by stressors (Banerjee et al., 2010), the nucleus incertus may modulate theta rhythm 

and motivated behaviors during stress episodes.  

Our data are in agreement with those from earlier studies of both anterograde-tracing of 

projections from the nucleus incertus (Goto et al., 2001; Olucha-Bordonau et al., 2003) and 

immunostaining of the dense RLN3 innervation of the rat medial septum (Tanaka et al., 2005; 

Ma et al., 2007). RLN3-positive fibers have also been observed in abundance in the medial 

septum of the mouse (Smith et al., 2010) and the non-human primate (Ma et al., 2009a), 

demonstrating the likely relevance of the current findings to the human brain. 

Implications for understanding medial septum function 

Comparison with the distribution of staining for different marker proteins within the 

medial septal area revealed that the highest concentration of RLN3 fibers was present in the 

dorsal and lateral areas of the medial septum. These regions were enriched in CB-28kD- and 

CR- containing neurons, but were devoid of PV-positive neurons. In contrast, ChAT-positive 

neurons were equally distributed throughout the medial septum, as were neurons retrogradely-

labeled with FG from the hippocampus. The entire medial septum contained a high density of 

RLN3-labeling and retrogradely-labeled neurons from the anterior hypothalamus, which 

contrasts with the lower density observed in the medial division of the rostral lateral septum. 

We also observed an area of overlapping hippocampal- and hypothalamic- projecting-neurons 

within the medial septum. 
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On the basis of the current findings it is worth considering the possible nature of the 

influence of RLN3 on neurons in the medial septum and the broader septohippocampal 

system. There are a number of possible differential effects of nucleus incertus projections on 

neurons in the medial septum, with a GABA- or a GABA/RLN3-containing projection onto 

septohippocampal neurons and onto intrinsic CB-28kD and CR neurons and hippocampal and 

hypothalamic projecting neurons in the lateral aspects of the medial septum. The dorsal area 

of the medial septum is mainly occupied by intrinsic GABAergic neurons suggesting that the 

projection to the dorsal area may disinhibit both PV and ChAT projection neurons. 

The dorsal area containing CR neurons has been identified as the main target of 

descending entorhinal projections that specifically target GABA/CR neurons that in turn 

project to the supramammillary area to target neurons that project back to the medial septum 

(Leranth et al., 1999). As the supramammillary area is also a prominent target of RLN3 fibers 

from the nucleus incertus (Ma et al., 2007), it is presumed that the nucleus incertus can 

modulate the broader septohippocampal system, not only through ascending projections, but 

also by modulating the entire loop of ascending supramammillary-septo-hippocampal and 

descending entorhinal-septal-supramammillary projections. Observations that both electrical 

stimulation of the nucleus incertus (Nunez et al., 2006) and direct injection of an RXFP3 

agonist into the medial septal area (Ma et al., 2009b) induce hippocampal theta are suggestive 

of a synergistic action of GABA and RLN3 on theta rhythm generation. 

Another important factor when considering the possible effects of RLN3 on septal 

function and theta rhythm generation is that 5HT projections arising from the raphe nuclei 

(Leranth and Vertes, 1999, Vertes et al., 1999) and RLN3 projections arising from the nucleus 

incertus (Olucha-Bordonau et al., 2003, Tanaka et al., 2005, Ma et al., 2007) both innervate 

the medial septum; and the median raphe, which is the main source of the 5HT innervation of 

the medial septum (Leranth and Vertes 1999), also receives projections from the nucleus 

incertus (Goto et al., 2001, Olucha Bordonau et al., 2003) and projects to the dorsal 

hippocampus (McKenna and Vertes, 2001). Indeed, a body of evidence indicates that the 

median raphe is involved in the control of the hippocampal EEG, especially states of 

hippocampal desynchronization (Vinogradova 1995, Leranth and Vertes 1999). Lesions of the 

median raphe produce continuous, ongoing theta activity (Yamamoto et al., 1979). And 

interestingly, median raphe stimulation disrupts the bursting discharge of septal pacemaking 

neurons, resulting in hippocampal desynchronization (Vertes, 1981, Kitchigina et al., 1999). 

In addition, pharmacological depletion of 5-HT alters the levels of relaxin-3 mRNA in 
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nucleus incertus neurons, presumably via 5-HT-1A receptors expressed by these cells or their 

inputs (Miyamoto et al., 2008). 

Inhibitory circuits are thought to be important in theta rhythm generation. Early 

anatomical observations revealed that PV/GABAergic septohippocampal neurons contact 

hippocampal interneurons (Freund and Antal, 1988) and these neurons produce disinhibition 

of pyramidal cells (Toth et al., 1997b). More recently, it was demonstrated that activation of 

GABAergic neurons in the medial septum that project to the hippocampus precedes the 

activation of hippocampal interneurons and the activity of these neurons leads to hippocampal 

theta rhythm (Hangya et al., 2009). The fact that PV-positive, septohippocampal projection 

neurons are specifically targeted by RLN3 projections supports the suggested role of the 

nucleus incertus and RLN3 in generating/modulating theta rhythm. 

It is possible that GABAergic CB-28kD and CR neurons in the septal area contribute to 

hippocampal theta generation and/or modulation. The dorsal area of the medial septum rich in 

CB-28kD and CR neurons may correspond to layer III of the zoning proposed regarding the 

‘onion skin-like’ organization of the septal complex (Jakab and Leranth 1995). Tracer 

injections in the MS/LS area where most of these neurons are located result in anterograde 

labeling in both vertical and horizontal MS (Risold and Swanson, 1997a) raising the 

possibility of influences of interneurons on septohippocampal neurons. In addition, collaterals 

from PV neurons of the angular portion of the medial septum project to CB-28kD positive 

neurons of the MS/LS area (Kiss et al., 1997). Thus, it is likely that intrinsic loops as well as 

long loops are modulated by RLN3 projections from the nucleus incertus. 

RLN3-positive fibers also contact cholinergic septal neurons. In fact, mR-positive fibers 

from the nucleus incertus form pericellular baskets around the soma of ChAT-positive 

neurons. ChAT-positive cells are characterized electrophysiologically as slow firing and are 

thought to contribute to theta by facilitating synchronization (Sotty et al., 2003). It is possible 

that inhibition of the cholinergic cells may contribute to a sharp transition between irregular 

activity and theta (but see Simon et al., 2006). Most nNOS-positive neurons are also 

cholinergic. Although there are no reports on the role of septohippocampal NO transmission 

in the production of theta rhythm, inhibition of NO transmission impairs the long-term 

potentiation produced by stimulation, phase-locked to the peak of theta (Holscher, 1999). 

Excitatory glutamate neurons in the medial septum may also contribute to theta 

generation and modulation (Sotty et al., 2003), but as it is difficult to visualize septal 

glutamate neuronal soma without colchicine enhancement of glutamate transporter staining 

(Gritti et al., 2006), we have not studied any potential interactions of RLN3 afferents with 
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these neurons. Glutamate positive cells are slow, cluster firing units (Sotty et al., 2003) and 

may contribute to hippocampal theta (Ujfalussy and Kiss, 2006). However, it is worth noting 

that a large proportion of local CB-28kD and calretinin neurons in the medial septum contain 

phosphate-activated glutaminase, the synthetic enzyme of glutamate (Gritti et al., 2003). 

It is of interest to distinguish two aspects of the nucleus incertus/RLN3 effects on 

hippocampal theta and function - firstly, the contribution of GABA and RLN3 actions on 

septal neurons and secondly, any differential effects on different hippocampal regions. As 

described by Ma et al. (2007), RLN3 co-localizes with GAD (GABA) in most but not all 

nucleus incertus cells, a finding that raises the possibility of differential effects of GABA and 

RLN3 on the target area. Although this question has not been addressed experimentally, 

indirect findings point to an agonistic, facilitatory effect of both transmitters. The stimulation 

of the nucleus incertus (which should induce GABA and RLN3 release) produces increases in 

theta rhythm, which are disrupted by lesion of the nucleus incertus (Núñez et al., 2006). In the 

same way, application of an RLN3 receptor agonist into the septal area results in an increase 

of theta that is eliminated by the prior injection of an antagonist (Ma et al., 2009b). Regarding 

any differential effect of nucleus incertus projections on dorsal and ventral hippocampus, the 

dorsal hippocampus (Núñez et al., 2006, Ma et al., 2009, Cervera-Ferri et al., 2011) does not 

contain abundant anterograde fibers arising from the nucleus incertus (Goto et al., 2001, 

Olucha-Bordonau et al., 2003) or RLN3 fibers (Tanaka et al., 2005, Ma et al., 2007), 

suggesting the effect of the nucleus incertus on this area might be more indirect through the 

medial septum. Alternatively, the high concentration of RLN3 positive fibers and anterograde 

fibers arising from the nucleus incertus (Goto et al., 2001, Olucha-Bordonau et al., 2003) in 

the ventral hippocampus (Tanaka et al., 2005, Ma et al., 2007) supports the idea of an 

involvement of this projection in modulating anxiety-related behavior, as a major role of 

ventral hippocampus is related to affective processes (Bannerman et al., 2002, 2004, Yoon 

and Otto, 2007). Consistent with this idea, the ventral hippocampus is preferentially targeted 

by the supramammillary nucleus (Haglund et al., 1984). 

Using electron microscopy, we have identified that RLN3 terminals display symmetric 

contacts on soma, dendritic shafts, dendritic spines and axon terminals. These terminals 

contain dense vesicles and densely-packed synaptic vesicles. These morphologies are near 

identical to those observed in anterogradely-labeled terminals following tracer injections into 

the nucleus incertus (Ma et al., 2009b) and these features are characteristic of inhibitory 

synapses (Gray, 1959, Peters, 1987, DeFelipe et al., 2002). 
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Together, the morphological features suggest that the nucleus incertus sends a strong 

GABA- and RLN3- inhibitory projection to nearly all the elements of the medial septum and 

drives ‘theta-modulating’ septohippocampal and intrinsic connections; and long distance 

hippocampus-septum-supramammillary loops. RLN3/RXFP3 signaling has been shown to 

affect several aspects of behavior related to theta rhythm. Intra-septal infusion of the selective 

RXFP3 agonist, R3/I5, induced an increase in hippocampal theta rhythm in a sensory-poor 

context (the habituated home cage), while the infusion of the RXFP3 antagonist, R3(B∆23-

27)R/I5, into the medial septum decreases hippocampal theta rhythm during exploratory 

behavior in a novel, enriched environment (Ma et al., 2009b). Similarly, the infusion of the 

antagonist into the medial septum disrupts performance in the spontaneous alternation task, a 

test of spatial working memory, in which rats must remember already visited arms in a plus 

maze in order to explore a novel arm (Ma et al., 2009b). 

Clarification of the likely cellular actions of RLN3 signaling within these complex 

circuits might be facilitated by studies using specific RXFP3 antisera to resolve the precise 

location of the receptor at the level of individual neurons, if such experimental tools become 

available. Future studies should also employ in vitro and in vivo electrophysiological studies 

to characterize actions of RXFP3 activity on different neuron types and pathways within the 

septum. Indeed, such studies are the goal of our current and future research (e.g. Ma et al., 

2009b; Bassant et al., 2005; Simon et al., 2006). 

Implications for understanding lateral septum function 

RLN3 fibers were not present in the caudal and ventral portions of the LS as defined by 

(Risold and Swanson, 1997b), which correspond to the regions known as dorsal and ventral 

divisions of the LS, according to the classical nomenclature (Jakab and Leranth, 1995). 

Although RLN3-labeled fibers occurred in all nuclei of the LSr, the highest density was 

observed in the LSr-vl nucleus, which corresponds to a part of the classical intermediate 

lateral septum (Jakab and Leranth, 1995), and in the LSc-v. The presence of a projection from 

the nucleus incertus and RLN3 fibers in the lateral septum has been described in rat (Olucha-

Bordonau et al., 2003; Tanaka et al., 2005; Ma et al., 2007), mouse (Smith et al., 2010) and 

non-human primate (Ma et al., 2009a), but an accurate identification of the targeted area has 

not been reported. Here we have identified these areas as the LSr-vl and the LSc-v, according 

to recently proposed cytoarchitectonic divisions (Risold and Swanson, 1997b). 

The LSr-vl has been characterized as the main source of septal projections to the anterior, 

dorsomedial, ventromedial and dorsal premammillary hypothalamic nuclei and to the 
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perifornical area of the hypothalamus. These nuclei, especially the anterior hypothalamic 

nucleus are part of the hypothalamic system involved in defense mechanisms against 

predators and social interactions towards conspecifics (Ferris et al., 1990; Risold et al., 1994; 

Motta et al., 2009). Rats exposed to a context associated with a predator or its cues display 

Fos activation in the anterior hypothalamic and dorsal premammillary nuclei, as well as the 

dorsolateral PAG (Cezario et al., 2008). Importantly, all these nuclei receive dense projections 

from the nucleus incertus (Goto et al., 2001; Olucha-Bordonau et al., 2003) and contain dense 

plexuses of RLN3 fibers (Tanaka et al., 2005; Ma et al., 2007). A key element in these 

pathways is the anterior hypothalamic nucleus, which is also densely innervated by the medial 

amygdala, which relays pheromonal inputs important for the expression of social behaviors in 

rodents (Halpern, 1987; Canteras et al., 1995). Notably, the medial nucleus contains the 

densest plexus of RLN3 fibers in the amygdala (Olucha-Bordonau et al., 2009). 

It has been reported consistently that lesions of the lateral septum induce a hyper-

defensive and transient behavior known as septal rage (Brady and Nauta, 1953; Brady and 

Nauta, 1955; Albert and Chew, 1980). In the latter work, the location of the lesion appeared 

restricted to the LSr-vl. As GABA is a primary septal transmitter, it is proposed that the lesion 

of lateral septum removes GABA inhibition from the hypothalamic centres that drive rage. 

Following this rationale, the GABAergic/RLN3 projection to the LSr-vl is predicted to alter 

the level of GABA transmission in the area and produce changes in the level of arousal/‘rage’ 

when an animal is under stress. In this respect, it is well documented that CRF and neurogenic 

stressors activate nucleus incertus neurons (Bittencourt and Sawchenko, 2000; Tanaka et al., 

2005; Ryan et al., 2011) and presumably drive arousal and behavioral state changes. An 

indirect reflection of this concept is the recently described hypoactive phenotype of that 

RLN3 KO mice (Smith et al., 2011). Specific behavioral studies are now required to 

investigate the role of nucleus incertus activity and local relaxin-3/RXFP3 signaling in the 

LS-vl in the control of defensive mechanisms. 

The lateral septum may also contribute to the action of the RLN3 system on ingestive 

behavior. Infusion of urocortin, a CRF family peptide, into the lateral septum induced 

anorectic effects that may be secondary to stress driven anxiety-like behavior (Bakshi et al., 

2007). Notably, the location of the injections in these experiments coincides with the 

distribution of RLN3-positive fibers in the LSr-vl. Furthermore, a correlation exists between 

stress and ingestive behavior, which may be partly centered in the LSr-vl, as activation of this 

region after stress is attenuated by intermittent access to sucrose (Martin and Timofeeva, 

2010). 
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A consistent ability of RLN3 or RXFP3 agonist peptides to increase food intake in 

satiated rats has been observed following both icv injection and local injection into several 

hypothalamic nuclei (McGowan et al., 2005; McGowan et al., 2006; McGowan et al., 2007) 

(Kuei et al., 2007); and the effect of RXFP3 activation on feeding is blocked by the 

intracerebroventricular infusion of the antagonists, R3(B∆23-27)R/I5 (Kuei et al., 2007) and 

R3(1-23R) (Haugaard-Kedström et al., 2011) suggesting a specific RXFP3-mediated action. 

In this regard, the RLN3 projection to the lateral septum may compensate for any anorectic 

effect of CRF-like peptides, acting as a feedback regulatory system for controlling food intake 

after activation of the nucleus incertus by CRF-like peptides. These possibilities can also be 

tested experimentally with the increased availability of agonist and antagonist peptides 

selective for RXFP3 (Liu et al., 2005; Kuei et al., 2007; Haugaard-Kedström et al., 2011). 

Regarding the strong projection to the LSc-v, we note that this ventral nucleus differs 

from the dorsal in many aspects. The dorsal nucleus is not targeted by RLN3 fibers, while the 

ventral nucleus receives a similar density of innervation as the medial septum. The pattern of 

connections for these areas is also rather different - the dorsal nucleus does not project to the 

anterior hypothalamus, whereas the ventral nucleus projects profusely to this area, aspects 

also described in the precise connectivity studies by Risold and Swanson (1997b) and Tulogdi 

et al. (2010). The main efferents from the LSc-v are directed to the lateral aspects of the 

medial septum (Risold and Swanson 1997b), which also contains a band of hypothalamic 

projecting neurons which innervate the “hypothalamic aggression area” (Tulogdi et al., 2010). 

Again, intrinsic projections within the septal area may provide the structural basis for the 

interaction between theta rhythm and behaviors such as exploration and aggression. 

Furthermore, the RLN3 projection to the septofimbrial and triangular septal nuclei may 

be important in the brain network that the nucleus incertus is an integral part of. The main 

efferent projection target of neurons in the septofimbrial and triangular septal nuclei is the 

medial habenula, which projects to the interpeduncular nuclei (Herkenham and Nauta, 1977) 

that in turn projects to the nucleus incertus (Goto et al., 2001), thus ‘closing the 

anatomical/functional loop’. This circuit also appears to participate in theta rhythm regulation 

and associated phenomena, as transection of the fasciculus retroflexus tract connecting the 

habenula to the interpeduncular nucleus results in reduction of hippocampal theta and REM 

sleep (high levels of theta characterize REM sleep) (Haum et al., 1992; Valjakka et al., 1998). 

Furthermore, the septofimbrial nucleus projects strongly to deep layers of the medial septum 

and the lateral supramammillary nucleus (Risold and Swanson, 1997b), which suggests a 

contribution of the septofimbrial nucleus to the generation/modulation of theta rhythm. 
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Conclusions 

The RLN3 projection to the septal area may mediate/modulate two kinds of processes - 

cognitive processing mediated by the lateral and dorsal areas of the medial septum; and 

ingestive and defensive processes mediated by the ventrolateral division of the rostral lateral 

septum (Fig. 19). The RLN3 projection to the medial septum may influence several sub-

systems including the PV-GABAergic septohippocampal projection, intrinsic connections 

within the medial septum, cholinergic septohippocampal projections and projections from the 

medial septum/lateral septum border that belong to a ‘long-loop’ of connections arising from 

the entorhinal cortex and terminating on supramammillary nucleus neurons, which in turn 

project to the medial septum and the hippocampus. It is possible that as a result of activity in 

these pathways a synchronized wave of activity at theta frequency occurs in the hippocampus. 

In this regard, it will be important to study the precise role of nucleus incertus GABA/RLN3 

inputs and their direct regulation of the hippocampus via actions on local GABA and RXFP3 

receptors (Ma et al., 2007). 

Our findings suggest that the nucleus incertus GABA/RLN3 system may also modulate 

descending pathways to the hypothalamus that subserve defensive and ingestive behaviors. 

Effects on defensive mechanisms may be mediated through actions on reciprocal projections 

between the lateral septum and the anterior hypothalamic area, as the latter region also 

receives projections from the medial amygdala and projects to the dorsal premammillary 

nucleus and the periaqueductal grey, where defensive behavior is driven. Notably, all the 

components of this system receive projections from the nucleus incertus. 

A prominent neurochemical feature of nucleus incertus neurons is their strong expression 

of CRF type 1 receptors (CRF1) (Bittencourt and Sawchenko, 2000; Van Pett et al., 2000). In 

fact, icv injection of CRF produces c-fos activation in nucleus incertus neurons (Bittencourt 

and Sawchenko, 2000; Tanaka et al., 2005); and stressors such as a forced swim induce a 

CRF1-dependent increase in RLN3 expression in nucleus incertus neurons (Banerjee et al., 

2010) and stress-induced insomnia and REM sleep deprivation produced c-Fos activation in 

these neurons (Cano et al., 2008). Therefore, activation of the nucleus incertus by CRF is a 

likely way to communicate stress-related information to cognitive and emotional centers in 

the forebrain via nucleus incertus/RLN3 projections. 
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FIGURE LEGENDS 

Figure 1. An example of a camera lucida drawing corresponding to the maps of CB-28kD and 

RLN3 immunoreactivity in the medial septum (Fig. 5D) and lateral septum (Fig. 7D). (A) 

Camera lucida drawing of the entire septal area. (B-F) High magnification images of the 

boxed areas marked in A. Arrows indicate RLN3 fibers. Scale bar, 200 µm (A), 40 µm (B-F). 

 

Figure 2. Injection points of FG in the hippocampus (A and B) and of miniruby (mR) in the 

nucleus incertus (C-F). Scale bars in B for A-B and in F for C-F 500 µm.  

 

Figure 3. Patterns of retrograde labeling in the septal area after anterior hypothalamic or 

hippocampal Fluorogold (FG) injections. (A) An injection site in the anterior hypothalamus 

centered in the anterior hypothalamic area that spread into the ventromedial hypothalamic 

nucleus, tuberal area, lateral hypothalamic and retrochiasmatic area. (B) Retrograde labeling 

in the septal area following FG injection in the anterior hypothalamus - the LSc-d and the MS 

are devoid of labeled cells. (C) Higher magnification view of retrograde labeling in the 

transition region between the vMS and the hMS, illustrating retrograde labeling in a band of 

cells on the lateral perimeter of the MS (arrows). (D) An injection site in the ventral 

hippocampus that spread through the subiculum, CA1, CA3 and dentate gyrus. (E) Retrograde 

labeling in the septal area following a FG injection in the ventral hippocampus - retrograde 

labeling fills almost the entire medial septum. (F) Higher magnification view of retrograde 

labeling in the transition region between the vMS and the hMS illustrating retrograde labeling 

throughout the entire ipsilateral medial septum and some on the contralateral side. Scale bars 

for A-B, D-E, 500 µm, for C and F 200 µm. For abbreviations, see list.  

 

Figure 4. Distribution of anterograde labeling in the septal area following a miniruby (mR) 

injection into the nucleus incertus, relative to the distribution of ChAT-positive neurons. 

ChAT-positive cells (blue) and anterograde fibers (red) were mapped in coronal sections 

using camera lucida and a 20× objective. Septal division boundaries are depicted in black and 

revectorized. (A) Level 1: a cavity is present in the midline. (B) Level 2: continuity exists 

between hMS and vMS. (C) Level 3: a clear division is observed between hMS and vMS and 

the fornix becomes evident in the dorsal tip of the vMS. (D) Level 4: the anterior commissure 

is interposed between the hMS and vMS. (E) Level 5: the posterior septum is composed of the 

triangular septal and the septofimbrial nucleus, where sparse ChAT-positive neurons were 

found between the bundles of the fimbria. At this level, the medial septum is only represented 
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by the hMS. The distribution of ChAT-positive neurons correlates with areas containing the 

densest plexuses of anterograde labeled fibers from the nucleus incertus. Scale bar, 500 µm. 

For abbreviations, see list. 

 

Figure 5. Distribution of RLN3-positive fibers in the septal area relative to the distribution of 

neurons retrogradely labeled following a FG injection into the ventral hippocampus. 

Immunostaining for FG and RLN3 was mapped as described in Figure 2. (A-E) Levels 1-5: 

Intense RLN3-labeling was observed within mostly medial septal regions containing 

retrogradely labeled neurons from the hippocampus including the vMS and hMS. The 

distribution of RLN3 fibers is similar to that of anterogradely labeling projections from the 

nucleus incertus (see Fig. 2). Scale bar, 500 µm. For abbreviations, see list. 

 

Figure 6. Distribution of RLN3-positive fibers in the septal area relative to the distribution of 

neurons retrogradely labeled following a FG injection into the anterior hypothalamus. 

Immunostaining for FG and RLN3 was mapped as described in Figure 2. (A-E) Level 1-5: 

Intense RLN3-labeling was observed within the vertical and horizontal limbs of MS septum, 

which contained a restricted band of retrogradely labeled neurons on the border with the 

lateral septum (B-D). RLN3-labeling was also observed in several lateral septum nuclei, 

which contained very high densities of retrogradely labeled neurons. The dorsal caudal lateral 

septum was the only region that did not contain retrograde labeling or RLN3-labeled fibers. 

For abbreviations, see list. Scale bar, 500 µm. 

 

Figure 7. Distribution of RLN3-positive fibers at level 1 of the septal area in the vertical limb 

of the medial septum and adjacent lateral septum. (A) Nissl stained section at level 1 is 

characterized by boundaries with the insula of Calleja Magna. Dorsal aspects of the septum 

include the dorsal part of the LSc and the septohippocampal nucleus. The central area 

includes the three divisions of the LSr - dorsolateral, ventrolateral and medial. At this level, 

two divisions of the medial septum are evident - vMS that contains loosely packed large 

neurons; and hMS that contains densely packed large neurons. (B-E) Double immunostaining 

for RLN3 (red) and other septal markers (blue) in the framed region of ‘A’, mapped using 

camera lucida. The boundaries of septal divisions are depicted in black and revectorized. 

Immunostaining for RLN3 mapped with (B) FG following injection into the ventral 

hippocampus, (C) parvalbumin, (D) calbindin-28kD, and (E) calretinin. Scale bars, 500 µm in 

A; 250 µm in B-E. 
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Figure 8. Distribution of RLN3-positive fibers at level 2 of the septal area in the vertical limb 

of the medial septum and adjacent lateral septum. (A) Nissl stained section at level 2 - 

characterized by the presence of the rostral-most level of the fornix, dorsal to the medial 

septum. Dorsal to the fornix, there is a clear divide between the septohippocampal nucleus 

and the LSc-d. In the ventral tip of this area, a clearly defined group of dense cells is 

observed, and identifiable as the LSc-v. The central area includes three divisions of the LSr - 

dorsolateral, ventrolateral and medial, which have no clear boundaries. At this level, there are 

two divisions of the medial septum, vMS containing loosely packed large neurons, and hMS 

containing densely packed large neurons. (B-E) Double immunostaining for RLN3 (red) and 

other septal markers (blue) in framed region of ‘A’, mapped using camera lucida. 

Immunostaining for RLN3 combined with (B) FG staining, following injection in the ventral 

hippocampus, (C) ChAT, (D) nNOS, (E) calretinin, and (F) TH. Scale bars, 500 µm in A; 250 

µm in B-E. 

 

Figure 9. Distribution of RLN3-positive fibers at level 3 of the septal area in the vertical limb 

of the medial septum and adjacent lateral septum. (A) A Nissl stained section at level 3 is 

characterized by fornix bundles occupying the dorsomedial aspects of the septum bordering 

the medial septum. Capping the fornix dorsolaterally, the LSc contains the dorsal and ventral 

divisions. Dorsal to the fornix, a clear divide exists between the septohippocampal nucleus 

and the LSc-d. In the ventral tip of this area, an apparent divide containing densely-packed 

cells was observed, identified as the LSc-v. The central area includes three divisions of the 

LSr - dorsolateral, ventrolateral and medial, which have no clear boundaries. At this level, 

there are two divisions of the medial septum, vMS containing loosely packed large neurons 

and hMS containing densely packed large neurons. (B-E) Double immunostaining for RLN3 

(red) and other septal markers (blue) in framed region of ‘A’, mapped using camera lucida. 

Immunostaining for RLN3 combined with (B) FG staining following injection in the anterior 

hypothalamus, (C) ChAT, (D) PV, (E) CB-28kD, and (F) CR. Scale bars, 500 µm in A; 250 

µm in B-E. 

 

Figure 10. Distribution of RLN3-positive fibers at level 4 of the septal area in the vertical 

limb of the medial septum and adjacent posterior septum. (A) A Nissl stained section at level 

4, at which the posterior septum appears in the center of the septal area and includes the 

triangular septal and septofimbral nuclei. Dorsolateral to these nuclei, the fimbrial bundles are 
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capped by the LSc-d/v and only the ventral division contained RLN3 fibers. Ventral to the 

fornix, a group of vMS neurons lie between the fornix and the anterior commissure. Lateral to 

this cell group, a diagonal band of neurons were observed, corresponding to the LS-v. The 

hMS appears over the ependymal surface, surrounded by the basal substantia innominata and 

the anterior dorsal peduncular hypothalamic area. (B-E) Double immunostaining for RLN3 

(red) and other septal markers (blue) in framed region of ‘A’, mapped using camera lucida. 

Immunostaining for RLN3 combined with (B) nNOS, (C) FG staining following injection into 

the anterior hypothalamus, (D) calretinin, (E) TH, and (F) calbindin. Scale bars, 500 µm in A; 

250 µm in B-E. 

 

Figure 11. Distribution of RLN3-positive fibers at level 5 of the septal area in the horizontal 

limb of the medial septum and the lateral septum. (A) A Nissl stained section at level 5, where 

the posterior septum is composed of the triangular septal and septofimbrial nuclei, which are 

capped by the dorsal and ventral LSc. Ventrally, the hMS is lateral to the preoptic area of the 

hypothalamus and is capped dorsally by the basal substantia innominata. (B-E) Double 

immunostaining for RLN3 (red) and other septal markers (blue) in framed region of ‘A’, 

mapped using camera lucida. Immunostaining for RLN3 combined with (B) calretinin, a 

robust marker for the triangular septal nucleus, (C) FG staining, following FG injection into 

the anterior hypothalamus, (D) parvalbumin, which delineated the extension of the triangular 

septal nucleus, (E) parvalbumin in the hMS (note: the SIB contained well-labeled 

parvalbumin neurons, but sparse RLN3 fibers), (F) nNOS (note: nNOS positive cells occupy 

different compartments of the hMS), and (F) FG staining, following FG injection into the 

ventral hippocampus. Scale bars, 500 µm in A; 250 µm in B-E. 

 

Figure 12. Septal targets of nucleus incertus neurons mapped after injection of the anterograde 

tracer, miniruby (mR), into the nucleus incertus. (A) Representative photomicrograph of an 

injection into the nucleus incertus pars compacta, which resulted in little or no spread from 

the injection site to the contralateral side, posterodorsal tegmental nucleus, or more rostrally 

located raphe nucleus. (B) Peri-somatic terminal-like labeling of mR fibers contacting a 

ChAT-positive cell in the region between the vMS and the hMS. (C) Anterograde terminal-

like labeling surrounding parvalbumin-positive soma and processes. (D) Terminal-like 

labeling contacting calbindin-positive soma and processes. (E-G) Confocal images illustrating 

putative contacts between anterogradely labeled mR fibers (red) and parvalbumin-positive 

somata (green) of a hippocampal-projecting neuron (blue), following FG injection into the 
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hippocampus. (E) Maximal projection of overlaid images from 10 sections of 0.8 µm. (F) A 

single section of 0.8 µm illustrating anterogradely-labeled elements and parvalbumin. (G) 

Retrogradely-labeled FG positive cells and anterogradely-labeled mR positive elements. 

Asterisks represent neurons double-labeled for FG and parvalbumin; arrows indicate contacts 

between anterogradely-labeled fibers and parvalbumin-positive somata or processes. Scale 

bars, A 200 µm, B-D 20 µm, E-G 40 µm. 

 

Figure 13. Confocal images illustrating putative contacts between RLN3-positive fibers and 

(A-D) GAD67-containing neurons; and (E,F) parvalbumin-containing neurons and FG 

containing neurons, following FG injection into the hippocampus. Neurons containing GAD 

or parvalbumin are marked by hexagons and neurons double-labeled for GAD and FG are 

indicated by stars. Arrows indicate possible contacts between RLN3-labeled fibers and 

labeled neurons or processes. (A) Overlaid maximal projection of 10 scans, 0.5 µm apart 

through the MS - FG (blue), GAD (red) and RLN3 (green), and (B-D) three single, 

consecutive scans, 0.5 µm apart, represented in A. (E) Maximal projection of 8 sections, 0.8 

µm apart - RLN3 (green), FG (blue) and PV (red); and (F) a single section of 0.8 µm, 

represented in E. Scale bars, 40 µm. 

 

Figure 14. Confocal images illustrating putative contacts between RLN3-positive fibers and 

(A-D) calbindin-28kD-containing neurons or (E-H) calretinin-containing neurons in the 

medial septum following FG injection into the hippocampus. No colocalization was observed 

between FG (blue) and CB-28kD or CR (red). (A) Maximal projection of 9 sections, 2 µm 

apart, stained for CB-28kD (red); and (B-D) three single, consecutive sections, 2 µm apart, 

represented in A. (E) Maximal projection of 9 sections, 2 µm apart, stained for CR (red), and 

(F-H) three single, consecutive sections, 2 µm apart, represented in A. Solid arrows indicate 

close contacts between RLN3 (green) and CB-28kD or CR cells. Open arrowheads indicate 

colocalization of RLN3 and CB 28kD or CR. Scale bars, 40 µm. 

 

Figure 15. Confocal images illustrating the colocalization of mR- (red) and RLN3- (green) 

associated immunofluorescence (arrows) in a nerve fiber stained for RLN3 and ChAT (cyan) 

in the medial septum in a coronal section from a case (#54) that received a FG injection into 

the hippocampus and and a mR injection into the nucleus incertus. Stars indicate double-

labeled FG (blue) and ChAT-positive neurons. Arrowheads indicate putative contacts 

between mR/RLN3 fibers and labeled neurons or processes. Immunofluorescence for (A) 
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RLN3 and FG; (B) mR and FG; (C) FG, mR and RLN3 - note overlap of RLN3 and mR 

labeling in some fibers; (D) triple-labeling for FG, ChAT and mR -note neurons labeled for 

ChAT and FG); (E) triple-labeling for ChAT, mR and RLN3; and (F) merge of FG, mR, 

RLN3 and ChAT. Scale bar, 40 µm. 

 

Figure 16. Confocal images illustrating the colocalization of RLN3 with synaptophysin 

puncta in regions of the (A-C) medial septum and (D-F) lateral septum (see schematic). 

Arrows indicate colocalization between RLN3 (red) and Syn (green). Single sections of 0.5 

µm illustrating immunofluorescent staining for (A) RLN3, (B) Syn, and (C) RLN3 and Syn 

images merged. Single sections of 0.5 µm in the LSr-vl, illustrating staining for (D) RLN3, 

(E) Syn, and (F) RLN3 + Syn (merged). Scale bars, 5 µm. 

 

Figure 17. Confocal images illustrating the colocalization of RLN3 with synaptophysin 

puncta in the (A-C) caudal LSv and (D-F) septofimbrial nucleus (see schematic). Arrows 

indicate colocalization between RLN3 (red) and Syn (green). Single sections of 0.5 µm in the 

caudal LSv, illustrating immunofluorescent staining for (A) Syn, (B) RLN3 and (C) RLN3 

and Syn images merged. Amongst the high densities of Syn puncta observed, large empty 

spaces likely correspond to neuronal somata. Single sections of 0.5 µm in the septofimbrial 

nucleus, illustrating immunofluorescent staining for (D) Syn, (E) RLN3, and (F) RLN3 + Syn 

(merged). The septofimbrial area contains groups of cells between axonal bundles that appear 

as empty spaces and the majority of RLN3 fibers display Syn staining. Scale bars, 5 µm. 

 

Figure 18. Electron photomicrographs of sections through the medial septum stained for 

RLN3 illustrating synaptic contacts between labeled terminals and postsynaptic structures. 

Most labeled terminals contained large, round dense-vesicles of ~100-150 nm in diameter 

(stars). (A) A labeled terminal (ter1) with symmetric contact (arrow) on a dendrite. This 

dendrite also makes contact with another terminal (ter2) that gives rise to an asymmetric 

contact (large arrowhead). (B) RLN3-labeled terminal (ter) making symmetric contacts with a 

soma (so) and a dendrite (de). (C,D) RLN3-labeled terminals making symmetric contacts with 

dendrites (arrows). Scale bars, 500 nm. 

 

Figure 19. Schematic diagram illustrating two major circuits modulated by RLN3 projections 

to the septal area. (Upper) Descending projections originating in the medial amygdala and 

LSr-vl converge on the anterior hypothalamic nucleus, where defensive neural signals are 
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channeled to the periaqueductal grey. (Lower) Modulatory inputs arising from the nucleus 

incertus control the medial septum through two types of projections - those to 

septohippocampal neurons and local neurons, and those to neurons in the supramammillary 

nucleus that in turn project to the medial septum and hippocampus. This circuit is responsible 

for the generation and modulation of hippocampal theta rhythm. 
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LIST OF ABBREVIATIONS USED IN FIGURES 

3V  third ventricle 

ac  anterior commissure 

Acb  accumbens nucleus shell 

ADP  anterodorsal preoptic nucleus 

ax  axon 

APir  amygdalopiriform transition ares 

BSTm  bed nucleus of the stria terminalis, medial 

CA1  field CA1 of hippocampus 

CB-28kD calbindin 28 kD 

ChAT  choline acetyltransferase 

CR  calretinin 

DG  dentate gyrus 

ds  dendritic shaft 

f  fornix 

FG  fluorogold 

GAD  glutamic acid decarboxylase 

hMS  medial septum, horizontal limb 

I  intercalated nuclei 

ICjM  insula of Calleja magna 

is  injection site 

Lent  lateral entorhinal area 

LSc-d  lateral septum, caudal dorsal 

LSc-v  lateral septum, caudal ventral 

LSr-dl  lateral septum, rostral, dorsolateral division 

LSr-m  lateral septum, rostral, medial division 

LSr-vl  lateral septum, rostral, ventrolateral division 

LSv  lateral septum, ventral 

MnPO  median preoptic nucleus 

MPA  medial preoptic area 

mR  miniruby 

NIc  Nucleus incertus pars compacta 

NId  Nucleus incertus pars dissipata 

nNOS  neuronal nitric oxide synthase 
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oc  optic chiasma 

PDTg  posterodorsal tegmental nucleus 

Pe  periventricular hypothalamic nucleus 

PV  parvalbumin 

RLN3  relaxin-3 

S  subiculum 

SFi  septofimbrial nucleus 

SHi  septohippocampal nucleus 

SIB  substantia innominata, basal part 

so  soma 

sp  dendritic spine 

sv  synaptic vesicles 

Syn  synaptophysin 

ter  axon terminal 

TH  tyrosine hydroxylase 

TS  triangular septal nucleus 

vMS  medial septum, vertical limb 
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TABLES 

Table 1. Neural tracer treatments of rats and immunohistochemistry studies analysed 

Case Tracer injection Immunohistochemical methods Analysis 

FH39 
FH40 
FH54 

FG hippocampus 
mR nucleus 
incertus 

Tracer fluorescence and immuno-
fluorescence (IF) for ChAT, PV, 
CB-28kD, CR 
BDA histochemistry-EM 
inclusion 

Confocal mR, FG, 
and ChAT, PV, CB-
28kD, CR 
EM 

MIB4 
MIB5 
MIB6 

- Double IF for RLN3 and 
synaptophysin 

Confocal co-location 
of RLN3 and 
synaptophysin 

MNC9 
MNC10 
MNC11 

FG 
hypothalamus 

Immunohistochemistry (IHC) for 
RLN3 and FG 

Camera lucida FG, 
RLN3 

FH70 
FH79 

- RLN3 IHC - EM inclusion EM 

FH54 mR nucleus 
incertus 

Double IHC for mR and ChAT, 
PV, CB-28kD and CR 

Camera lucida mR, 
FG, and ChAT, PV, 
CB-28kD, CR 

FH56 
RX22 

mR nucleus 
incertus 

Double IHC for mR and ChAT, 
PV, CB-28kD and CR 

Camera lucida mR, 
FG, and ChAT, PV, 
CB-28kD, CR 

SF1 
SF2 

FG hippocampus 
mR nucleus 
incertus 

Triple IF for mR, FG, RLN3 and 
ChAT, PV, CB-28kD, CR 

Confocal 

CC1, CU3 
CK1, FO8 
FH78, 
NIF2 
PCM12 

- Double IHC and IF for RLN3 and 
ChAT, PV, CB-28kD, CR, nNOS 

Confocal 
Camera lucida 

MIC7, 
MIC8 

- Double IHC for RLN3 and TH, 
nNOS  

Camera lucida 

SM6* 
SM7* 
SM8* 

- Double IHC and IF for RLN3 and 
ChAT, PV, CB-28kD, CR 

Confocal 
Camera lucida 

* These rats received a foot shock of 0.6 mA for 2 sec, 90 min prior to processing. 
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Table 2. List of Primary Antibodies Used in Immunoperoxidase and Immunofluorescence 

Staining 

Antigen Immunogen (MW) 
 

Manufacturer, Host 
species, Ig isotype, 
Catalog number 

Dilution used 
in IHC/IF1 

Fluorogold Fluorogold 
(5-hydroxystabilamide) 

Chemicon, Temacula CA, 
USA, rabbit, polyclonal, 
AB-153 

IHC 1:3,000 

ChAT choline acetyltransferase (70 
kD) 

Chemicon, Temacula CA, 
USA, goat, polyclonal, 
AB-144 

IHC: 1:1,000 
IF: 1:500 

CB-28kD chicken calbindin D-28k (28 
kD) 

Swant, Bellinzona, 
Switzerland, mouse, 
monoclonal, McAB300 

IHC: 1:10,000 
IF: 1:5,000 

CR recombinant human 
calretinin-22k (22 kD) 

Swant, Bellinzona, 
Switzerland, mouse, 
monoclonal, McAB6B3 

IHC: 1:5,000 
IF: 1:2,500 

PV carp parvalbumin (12 kD) Swant, Bellinzona, 
Switzerland, mouse, 
monoclonal, McAB235 

IHC: 1:10,000 
IF: 1:5,000 

GAD-67 recombinant GAD-67 (67 
kD) 

Chemicon, Temacula CA, 
USA, mouse, monoclonal, 
MAB-5406 

IHC: 1:300 
IF: 1:150 

TH rat tyrosine hydroxylase Sigma, St Louis, MO, 
USA, mouse, monoclonal, 
T1299 

IHC: 1:10,000 
 

nNOS recombinant amino acids 1-
181 of nNOS 

Sigma, St Louis, MO, 
USA, mouse, monoclonal, 
N2280 

IHC: 1:500 
IF: 1:250 

synaptophysin rat retinal synaptosomes 
antigen (38 kD) 

Sigma, St Louis, MO, 
USA, mouse, monoclonal, 
S5768 

IF: 1:1,000 

relaxin-3 amino acids 85-101 of pro-
RLN3 peptide conjugated to 
KLH  

Howard Florey Institute, 
Melbourne, Australia, 
rabbit, polyclonal 

IHC: 1:2,500 
IF: 1:1,250 
ICC-EM: 
1:2,5002 

1IHC/IF incubations were in TBS-Tx100. 
2ICC-EM incubations were in 0.1M PB. 
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Table 3. Semi-quantitative estimates of the distribution of RLN3 immuno-positive fibers 

relative to neural markers of the medial septum 

 

Division RLN3 PV CB CR ChAT nNOS FG-

Hyp 

FG-

Hipp 

vMS +++ +++ ++ ++ +++ ++ - ++++ 

hMS +++ +++ + + +++ ++ - ++ 

SIB + ++ ++ + ++ + +++ - 

TS + ++ ++++ ++++ - - + - 

 

Semi-quantitative estimates were made by visual observation of microscopic fields using a 20× 

objective: (-) no labelling, (+) 1-4 labeled fibers or cells, (++) 5-8 labeled fibers or cells, (+++) 9-12 

labeled fibers or cells, (+++) more than 12 labeled fibers or cells. 
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Table 4. Semi-quantitative estimates of the distribution of RLN3 immuno-positive fibers 

relative to neural markers of the lateral septum 

 

Division RLN3 TH CB CR FG-Hyp FG-Hipp 

LSc-d - - + + - - 

LSc-v ++++ - ++ ++ +++ - 

LSv + - +++ - +++ - 

LSr-dl + + +++ - +++ - 

LSr-m + ++++ +++ ++ +++ - 

LSr-vl +++ + +++ +++ +++ - 

SHi - - - - - - 

SFi +++ - +++ ++++ ++ - 

iCjM + - + +++ - - 

 

Semi-quantitative estimates were made by visual observation of microscopic fields using a 20× 

objective: (-) no labelling, (+) 1-4 labeled fibers or cells, (++) 5-8 labeled fibers or cells, (+++) 9-12 

labeled fibers or cells, (+++) more than 12 labeled fibers or cells. 
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Figure 1. An example of a camera lucida drawing corresponding to the maps of CB-28kD and RLN3 
immunoreactivity in the medial septum (Fig. 5D) and lateral septum (Fig. 7D). (A) Camera lucida drawing of 

the entire septal area. (B-F) High magnification images of the boxed areas marked in A. Arrows indicate 

RLN3 fibers. Scale bar, 200 µm (A), 40 µm (B-F).  
178x289mm (300 x 300 DPI)  
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Figure 2. Injection points of FG in the hippocampus (A and B) and of miniruby (mR) in the nucleus incertus 
(C-F). Scale bars in B for A-B and in F for C-F 500 µm.  

205x255mm (300 x 300 DPI)  

 
 

Page 54 of 80

John Wiley & Sons

Journal of Comparative Neurology



  

 

 

Figure 3. Patterns of retrograde labeling in the septal area after anterior hypothalamic or hippocampal 
Fluorogold (FG) injections. (A) An injection site in the anterior hypothalamus centered in the anterior 

hypothalamic area that spread into the ventromedial hypothalamic nucleus, tuberal area, lateral 

hypothalamic and retrochiasmatic area. (B) Retrograde labeling in the septal area following FG injection in 
the anterior hypothalamus - the LSc-d and the MS are devoid of labeled cells. (C) Higher magnification view 
of retrograde labeling in the transition region between the vMS and the hMS, illustrating retrograde labeling 

in a band of cells on the lateral perimeter of the MS (arrows). (D) An injection site in the ventral 
hippocampus that spread through the subiculum, CA1, CA3 and dentate gyrus. (E) Retrograde labeling in 
the septal area following a FG injection in the ventral hippocampus - retrograde labeling fills almost the 

entire medial septum. (F) Higher magnification view of retrograde labeling in the transition region between 
the vMS and the hMS illustrating retrograde labeling throughout the entire ipsilateral medial septum and 

some on the contralateral side. Scale bars for A-B, D-E, 500 µm, for C and F 200 µm. For abbreviations, see 
list.  
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Figure 4. Distribution of anterograde labeling in the septal area following a miniruby (mR) injection into the 
nucleus incertus, relative to the distribution of ChAT-positive neurons. ChAT-positive cells (blue) and 

anterograde fibers (red) were mapped in coronal sections using camera lucida and a 20× objective. Septal 

division boundaries are depicted in black and revectorized. (A) Level 1: a cavity is present in the midline. (B) 
Level 2: continuity exists between hMS and vMS. (C) Level 3: a clear division is observed between hMS and 
vMS and the fornix becomes evident in the dorsal tip of the vMS. (D) Level 4: the anterior commissure is 
interposed between the hMS and vMS. (E) Level 5: the posterior septum is composed of the triangular 

septal and the septofimbrial nucleus, where sparse ChAT-positive neurons were found between the bundles 
of the fimbria. At this level, the medial septum is only represented by the hMS. The distribution of ChAT-
positive neurons correlates with areas containing the densest plexuses of anterograde labeled fibers from 

the nucleus incertus. Scale bar, 500 µm. For abbreviations, see list.  
178x286mm (300 x 300 DPI)  
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Figure 5. Distribution of RLN3-positive fibers in the septal area relative to the distribution of neurons 
retrogradely labeled following a FG injection into the ventral hippocampus. Immunostaining for FG and RLN3 
was mapped as described in Figure 2. (A-E) Levels 1-5: Intense RLN3-labeling was observed within mostly 

medial septal regions containing retrogradely labeled neurons from the hippocampus including the vMS and 
hMS. The distribution of RLN3 fibers is similar to that of anterogradely labeling projections from the nucleus 

incertus (see Fig. 2). Scale bar, 500 µm. For abbreviations, see list.  
209x296mm (300 x 300 DPI)  
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Figure 6. Distribution of RLN3-positive fibers in the septal area relative to the distribution of neurons 
retrogradely labeled following a FG injection into the anterior hypothalamus. Immunostaining for FG and 

RLN3 was mapped as described in Figure 2. (A-E) Level 1-5: Intense RLN3-labeling was observed within the 

vertical and horizontal limbs of MS septum, which contained a restricted band of retrogradely labeled 
neurons on the border with the lateral septum (B-D). RLN3-labeling was also observed in several lateral 

septum nuclei, which contained very high densities of retrogradely labeled neurons. The dorsal caudal lateral 
septum was the only region that did not contain retrograde labeling or RLN3-labeled fibers. For 

abbreviations, see list. Scale bar, 500 µm.  
188x292mm (300 x 300 DPI)  
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Figure 7. Distribution of RLN3-positive fibers at level 1 of the septal area in the vertical limb of the medial 
septum and adjacent lateral septum. (A) Nissl stained section at level 1 is characterized by boundaries with 

the insula of Calleja Magna. Dorsal aspects of the septum include the dorsal part of the LSc and the 

septohippocampal nucleus. The central area includes the three divisions of the LSr - dorsolateral, 
ventrolateral and medial. At this level, two divisions of the medial septum are evident - vMS that contains 

loosely packed large neurons; and hMS that contains densely packed large neurons. (B-E) Double 
immunostaining for RLN3 (red) and other septal markers (blue) in the framed region of ‘A’, mapped using 

camera lucida. The boundaries of septal divisions are depicted in black and revectorized. Immunostaining for 
RLN3 mapped with (B) FG following injection into the ventral hippocampus, (C) parvalbumin, (D) calbindin-

28kD, and (E) calretinin. Scale bars, 500 µm in A; 250 µm in B-E.  
201x252mm (300 x 300 DPI)  
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Figure 8. Distribution of RLN3-positive fibers at level 2 of the septal area in the vertical limb of the medial 
septum and adjacent lateral septum. (A) Nissl stained section at level 2 - characterized by the presence of 
the rostral-most level of the fornix, dorsal to the medial septum. Dorsal to the fornix, there is a clear divide 

between the septohippocampal nucleus and the LSc-d. In the ventral tip of this area, a clearly defined group 
of dense cells is observed, and identifiable as the LSc-v. The central area includes three divisions of the LSr 

- dorsolateral, ventrolateral and medial, which have no clear boundaries. At this level, there are two 
divisions of the medial septum, vMS containing loosely packed large neurons, and hMS containing densely 

packed large neurons. (B-E) Double immunostaining for RLN3 (red) and other septal markers (blue) in 
framed region of ‘A’, mapped using camera lucida. Immunostaining for RLN3 combined with (B) FG staining, 
following injection in the ventral hippocampus, (C) ChAT, (D) nNOS, (E) calretinin, and (F) TH. Scale bars, 

500 µm in A; 250 µm in B-E.  
199x254mm (300 x 300 DPI)  
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Figure 9. Distribution of RLN3-positive fibers at level 3 of the septal area in the vertical limb of the medial 
septum and adjacent lateral septum. (A) A Nissl stained section at level 3 is characterized by fornix bundles 

occupying the dorsomedial aspects of the septum bordering the medial septum. Capping the fornix 

dorsolaterally, the LSc contains the dorsal and ventral divisions. Dorsal to the fornix, a clear divide exists 
between the septohippocampal nucleus and the LSc-d. In the ventral tip of this area, an apparent divide 
containing densely-packed cells was observed, identified as the LSc-v. The central area includes three 

divisions of the LSr - dorsolateral, ventrolateral and medial, which have no clear boundaries. At this level, 
there are two divisions of the medial septum, vMS containing loosely packed large neurons and hMS 

containing densely packed large neurons. (B-E) Double immunostaining for RLN3 (red) and other septal 
markers (blue) in framed region of ‘A’, mapped using camera lucida. Immunostaining for RLN3 combined 
with (B) FG staining following injection in the anterior hypothalamus, (C) ChAT, (D) PV, (E) CB-28kD, and 

(F) CR. Scale bars, 500 µm in A; 250 µm in B-E.  
199x255mm (300 x 300 DPI)  
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Figure 10. Distribution of RLN3-positive fibers at level 4 of the septal area in the vertical limb of the medial 
septum and adjacent posterior septum. (A) A Nissl stained section at level 4, at which the posterior septum 

appears in the center of the septal area and includes the triangular septal and septofimbral nuclei. 

Dorsolateral to these nuclei, the fimbrial bundles are capped by the LSc-d/v and only the ventral division 
contained RLN3 fibers. Ventral to the fornix, a group of vMS neurons lie between the fornix and the anterior 
commissure. Lateral to this cell group, a diagonal band of neurons were observed, corresponding to the LS-
v. The hMS appears over the ependymal surface, surrounded by the basal substantia innominata and the 

anterior dorsal peduncular hypothalamic area. (B-E) Double immunostaining for RLN3 (red) and other septal 
markers (blue) in framed region of ‘A’, mapped using camera lucida. Immunostaining for RLN3 combined 

with (B) nNOS, (C) FG staining following injection into the anterior hypothalamus, (D) calretinin, (E) TH, and 
(F) calbindin. Scale bars, 500 µm in A; 250 µm in B-E.  

201x260mm (300 x 300 DPI)  
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Figure 11. Distribution of RLN3-positive fibers at level 5 of the septal area in the horizontal limb of the 
medial septum and the lateral septum. (A) A Nissl stained section at level 5, where the posterior septum is 
composed of the triangular septal and septofimbrial nuclei, which are capped by the dorsal and ventral LSc. 

Ventrally, the hMS is lateral to the preoptic area of the hypothalamus and is capped dorsally by the basal 
substantia innominata. (B-E) Double immunostaining for RLN3 (red) and other septal markers (blue) in 

framed region of ‘A’, mapped using camera lucida. Immunostaining for RLN3 combined with (B) calretinin, a 
robust marker for the triangular septal nucleus, (C) FG staining, following FG injection into the anterior 
hypothalamus, (D) parvalbumin, which delineated the extension of the triangular septal nucleus, (E) 
parvalbumin in the hMS (note: the SIB contained well-labeled parvalbumin neurons, but sparse RLN3 
fibers), (F) nNOS (note: nNOS positive cells occupy different compartments of the hMS), and (F) FG 

staining, following FG injection into the ventral hippocampus. Scale bars, 500 µm in A; 250 µm in B-E.  
194x289mm (300 x 300 DPI)  
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Figure 12. Septal targets of nucleus incertus neurons mapped after injection of the anterograde tracer, 
miniruby (mR), into the nucleus incertus. (A) Representative photomicrograph of an injection into the 

nucleus incertus pars compacta, which resulted in little or no spread from the injection site to the 
contralateral side, posterodorsal tegmental nucleus, or more rostrally located raphe nucleus. (B) Peri-

somatic terminal-like labeling of mR fibers contacting a ChAT-positive cell in the region between the vMS 
and the hMS. (C) Anterograde terminal-like labeling surrounding parvalbumin-positive soma and processes. 

(D) Terminal-like labeling contacting calbindin-positive soma and processes. (E-G) Confocal images 
illustrating putative contacts between anterogradely labeled mR fibers (red) and parvalbumin-positive 

somata (green) of a hippocampal-projecting neuron (blue), following FG injection into the hippocampus. (E) 

Maximal projection of overlaid images from 10 sections of 0.8 µm. (F) A single section of 0.8 µm illustrating 
anterogradely-labeled elements and parvalbumin. (G) Retrogradely-labeled FG positive cells and 

anterogradely-labeled mR positive elements. Asterisks represent neurons double-labeled for FG and 
parvalbumin; arrows indicate contacts between anterogradely-labeled fibers and parvalbumin-positive 

somata or processes. Scale bars, A 200 µm, B-D 20 µm, E-G 40 µm.  
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Figure 13. Confocal images illustrating putative contacts between RLN3-positive fibers and (A-D) GAD67-
containing neurons; and (E,F) parvalbumin-containing neurons and FG containing neurons, following FG 
injection into the hippocampus. Neurons containing GAD or parvalbumin are marked by hexagons and 

neurons double-labeled for GAD and FG are indicated by stars. Arrows indicate possible contacts between 
RLN3-labeled fibers and labeled neurons or processes. (A) Overlaid maximal projection of 10 scans, 0.5 µm 
apart through the MS - FG (blue), GAD (red) and RLN3 (green), and (B-D) three single, consecutive scans, 

0.5 µm apart, represented in A. (E) Maximal projection of 8 sections, 0.8 µm apart - RLN3 (green), FG 
(blue) and PV (red); and (F) a single section of 0.8 µm, represented in E. Scale bars, 40 µm.  

166x251mm (300 x 300 DPI)  
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Figure 14. Confocal images illustrating putative contacts between RLN3-positive fibers and (A-D) calbindin-
28kD-containing neurons or (E-H) calretinin-containing neurons in the medial septum following FG injection 

into the hippocampus. No colocalization was observed between FG (blue) and CB-28kD or CR (red). (A) 

Maximal projection of 9 sections, 2 µm apart, stained for CB-28kD (red); and (B-D) three single, 
consecutive sections, 2 µm apart, represented in A. (E) Maximal projection of 9 sections, 2 µm apart, 
stained for CR (red), and (F-H) three single, consecutive sections, 2 µm apart, represented in A. Solid 

arrows indicate close contacts between RLN3 (green) and CB-28kD or CR cells. Open arrowheads indicate 
colocalization of RLN3 and CB 28kD or CR. Scale bars, 40 µm.  

167x273mm (300 x 300 DPI)  

 
 

Page 73 of 80

John Wiley & Sons

Journal of Comparative Neurology



  

 

 

Figure 15. Confocal images illustrating the colocalization of mR- (red) and RLN3- (green) associated 
immunofluorescence (arrows) in a nerve fiber stained for RLN3 and ChAT (cyan) in the medial septum in a 

coronal section from a case (#54) that received a FG injection into the hippocampus and and a mR injection 
into the nucleus incertus. Stars indicate double-labeled FG (blue) and ChAT-positive neurons. Arrowheads 

indicate putative contacts between mR/RLN3 fibers and labeled neurons or processes. Immunofluorescence 
for (A) RLN3 and FG; (B) mR and FG; (C) FG, mR and RLN3 - note overlap of RLN3 and mR labeling in some 
fibers; (D) triple-labeling for FG, ChAT and mR -note neurons labeled for ChAT and FG); (E) triple-labeling 

for ChAT, mR and RLN3; and (F) merge of FG, mR, RLN3 and ChAT. Scale bar, 40 µm.  
157x256mm (300 x 300 DPI)  
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Figure 16. Confocal images illustrating the colocalization of RLN3 with synaptophysin puncta in regions of 
the (A-C) medial septum and (D-F) lateral septum (see schematic). Arrows indicate colocalization between 

RLN3 (red) and Syn (green). Single sections of 0.5 µm illustrating immunofluorescent staining for (A) RLN3, 
(B) Syn, and (C) RLN3 and Syn images merged. Single sections of 0.5 µm in the LSr-vl, illustrating staining 

for (D) RLN3, (E) Syn, and (F) RLN3 + Syn (merged). Scale bars, 5 µm.  

182x271mm (300 x 300 DPI)  
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Figure 17. Confocal images illustrating the colocalization of RLN3 with synaptophysin puncta in the (A-C) 
caudal LSv and (D-F) septofimbrial nucleus (see schematic). Arrows indicate colocalization between RLN3 

(red) and Syn (green). Single sections of 0.5 µm in the caudal LSv, illustrating immunofluorescent staining 

for (A) Syn, (B) RLN3 and (C) RLN3 and Syn images merged. Amongst the high densities of Syn puncta 
observed, large empty spaces likely correspond to neuronal somata. Single sections of 0.5 µm in the 

septofimbrial nucleus, illustrating immunofluorescent staining for (D) Syn, (E) RLN3, and (F) RLN3 + Syn 
(merged). The septofimbrial area contains groups of cells between axonal bundles that appear as empty 

spaces and the majority of RLN3 fibers display Syn staining. Scale bars, 5 µm.  
183x271mm (300 x 300 DPI)  
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Figure 18. Electron photomicrographs of sections through the medial septum stained for RLN3 illustrating 
synaptic contacts between labeled terminals and postsynaptic structures. Most labeled terminals contained 

large, round dense-vesicles of ~100-150 nm in diameter (stars). (A) A labeled terminal (ter1) with 
symmetric contact (arrow) on a dendrite. This dendrite also makes contact with another terminal (ter2) that 
gives rise to an asymmetric contact (large arrowhead). (B) RLN3-labeled terminal (ter) making symmetric 
contacts with a soma (so) and a dendrite (de). (C,D) RLN3-labeled terminals making symmetric contacts 

with dendrites (arrows). Scale bars, 500 nm.  
194x146mm (300 x 300 DPI)  
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Figure 19. Schematic diagram illustrating two major circuits modulated by RLN3 projections to the septal 
area. (Upper) Descending projections originating in the medial amygdala and LSr-vl converge on the 

anterior hypothalamic nucleus, where defensive neural signals are channeled to the periaqueductal grey. 
(Lower) Modulatory inputs arising from the nucleus incertus control the medial septum through two types of 

projections - those to septohippocampal neurons and local neurons, and those to neurons in the 
supramammillary nucleus that in turn project to the medial septum and hippocampus. This circuit is 

responsible for the generation and modulation of hippocampal theta rhythm.  
218x205mm (72 x 72 DPI)  
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LIST OF ABBREVIATIONS USED IN FIGURES 

3V  third ventricle 

ac  anterior commissure 

Acb  accumbens nucleus shell 

ADP  anterodorsal preoptic nucleus 

ax  axon 

APir  amygdalopiriform transition ares 

BSTm  bed nucleus of the stria terminalis, medial 

CA1  field CA1 of hippocampus 

CB-28kD calbindin 28 kD 

ChAT  choline acetyltransferase 

CR  calretinin 

DG  dentate gyrus 

ds  dendritic shaft 

f  fornix 

FG  fluorogold 

GAD  glutamic acid decarboxylase 

hMS  medial septum, horizontal limb 

I  intercalated nuclei 

ICjM  insula of Calleja magna 

is  injection site 

Lent  lateral entorhinal area 

LSc-d  lateral septum, caudal dorsal 

LSc-v  lateral septum, caudal ventral 

LSr-dl  lateral septum, rostral, dorsolateral division 

LSr-m  lateral septum, rostral, medial division 

LSr-vl  lateral septum, rostral, ventrolateral division 

LSv  lateral septum, ventral 

MnPO  median preoptic nucleus 

MPA  medial preoptic area 

mR  miniruby 

NIc  Nucleus incertus pars compacta 

NId  Nucleus incertus pars dissipata 

nNOS  neuronal nitric oxide synthase 
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oc  optic chiasma 

PDTg  posterodorsal tegmental nucleus 

Pe  periventricular hypothalamic nucleus 

PV  parvalbumin 

RLN3  relaxin-3 

S  subiculum 

SFi  septofimbrial nucleus 

SHi  septohippocampal nucleus 

SIB  substantia innominata, basal part 

so  soma 

sp  dendritic spine 

sv  synaptic vesicles 

Syn  synaptophysin 

ter  axon terminal 

TH  tyrosine hydroxylase 

TS  triangular septal nucleus 

vMS  medial septum, vertical limb 
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Supplementary figure 1. Confocal images illustrating the colocalization of RLN3 with synaptophysin puncta in 
regions of the (A-C) medial septum and (D-F) lateral septum (see schematic). Arrows indicate colocalization 
between RLN3 (magenta) and Syn (green). Single sections of 0.5 µm illustrating immunofluorescent staining 

for (A) RLN3, (B) Syn, and (C) RLN3 and Syn images merged. Single sections of 0.5 µm in the LSr-vl, 
illustrating staining for (D) RLN3, (E) Syn, and (F) RLN3 + Syn (merged). Scale bars, 5 µm.  

229x319mm (300 x 300 DPI)  
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Supplementary figure 2. Confocal images illustrating the colocalization of RLN3 with synaptophysin puncta in 
the (A-C) caudal LSv and (D-F) septofimbrial nucleus (see schematic). Arrows indicate colocalization 
between RLN3 (magenta) and Syn (green). Single sections of 0.5 µm in the caudal LSv, illustrating 

immunofluorescent staining for (A) Syn, (B) RLN3 and (C) RLN3 and Syn images merged. Amongst the high 
densities of Syn puncta observed, large empty spaces likely correspond to neuronal somata. Single sections 
of 0.5 µm in the septofimbrial nucleus, illustrating immunofluorescent staining for (D) Syn, (E) RLN3, and 
(F) RLN3 + Syn (merged). The septofimbrial area contains groups of cells between axonal bundles that 

appear as empty spaces and the majority of RLN3 fibers display Syn staining. Scale bars, 5 µm.  
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SUPPLEMENTARY FILES: 

 

Supplementary figure 1. Confocal images illustrating the colocalization of RLN3 with 

synaptophysin puncta in regions of the (A-C) medial septum and (D-F) lateral septum 

(see schematic). Arrows indicate colocalization between RLN3 (magenta) and Syn 

(green). Single sections of 0.5 µm illustrating immunofluorescent staining for (A) RLN3, 

(B) Syn, and (C) RLN3 and Syn images merged. Single sections of 0.5 µm in the LSr-vl, 

illustrating staining for (D) RLN3, (E) Syn, and (F) RLN3 + Syn (merged). Scale bars, 5 

µm. 

 

Supplementary figure 2. Confocal images illustrating the colocalization of RLN3 with 

synaptophysin puncta in the (A-C) caudal LSv and (D-F) septofimbrial nucleus (see 

schematic). Arrows indicate colocalization between RLN3 (magenta) and Syn (green). 

Single sections of 0.5 µm in the caudal LSv, illustrating immunofluorescent staining for 

(A) Syn, (B) RLN3 and (C) RLN3 and Syn images merged. Amongst the high densities 

of Syn puncta observed, large empty spaces likely correspond to neuronal somata. Single 

sections of 0.5 µm in the septofimbrial nucleus, illustrating immunofluorescent staining 

for (D) Syn, (E) RLN3, and (F) RLN3 + Syn (merged). The septofimbrial area contains 

groups of cells between axonal bundles that appear as empty spaces and the majority of 

RLN3 fibers display Syn staining. Scale bars, 5 µm. 
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