23 research outputs found

    Diversity of respiratory parameters and metabolic adaptation to low oxygen tension in mesenchymal stromal cells

    Get PDF
    Objective Cell metabolism has been shown to play an active role in regulation of stemness and fate decision. In order to identify favorable culture conditions for mesenchymal stromal cells (MSCs) prior to transplantation, this study aimed to characterize the metabolic function of MSCs from different developmental stages in response to different oxygen tension during expansion. Materials and methods We cultured human fetal cardiac MSCs and human adult bone-marrow MSCs for a week under hypoxia (3% O2) and normoxia (20% O2). We performed mitochondrial characterization and assessed oxygen consumption- and extracellular acidification-rates (OCR and ECAR) in addition to oxygen-sensitive respiration and mitochondrial complex activities, using both the Seahorse and Oroboros systems. Results Adult and fetal MSCs displayed similar basal respiration and mitochondrial amount, however fetal MSCs had lower spare respiratory capacity and apparent coupling efficiency. Fetal MSCs expanded in either hypoxia or normoxia demonstrated similar acidification rates, while adult MSCs downregulated their aerobic glycolysis in normoxia. Acute decrease in oxygen tension caused a higher respiratory inhibition in adult compared to fetal MSCs. In both sources of MSCs, minor changes in complex activities in normoxic and hypoxic cultures were found. Conclusions In contrast to adult MSCs, fetal MSCs displayed similar respiration and aerobic glycolysis at different O2 culture concentrations during expansion. Adult MSCs adjusted their respiration to glycolytic activities, depending on the culture conditions thus displaying a more mature metabolic function. These findings are relevant for establishing optimal in vitro culturing conditions, with the aim to maximize engraftment and therapeutic outcome.CC BY-NC-ND 4.0Corresponding author: Department of Surgical Sciences, Uppsala University, 751 85, Uppsala, Sweden. E-mail address: [email protected] (K.-H. Grinnemo).Available online 3 February 2022, Version of Record 5 February 2022The project was funded by Karolinska Institute-Mayo Clinic Collaborative Grant 2013; The Swedish Research Council young investigator: 2013–3590; Stockholm county; The Swedish Research Council; The Family Erling-Persson Foundation; ERC-2018-AdG (834860 EYELETS); Uppsala county; Uppsala County Association against Heart and Lung Diseases; and Higher Education of the Russian Federation (agreement no. 075-15-2020-899).</p

    Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo

    Get PDF
    While small interfering RNAs (siRNAs) have been rapidly appreciated to silence genes, efficient and non-toxic vectors for primary cells and for systemic in vivo delivery are lacking. Several siRNA-delivery vehicles, including cell-penetrating peptides (CPPs), have been developed but their utility is often restricted by entrapment following endocytosis. Hence, developing CPPs that promote endosomal escape is a prerequisite for successful siRNA implementation. We here present a novel CPP, PepFect 6 (PF6), comprising the previously reported stearyl-TP10 peptide, having pH titratable trifluoromethylquinoline moieties covalently incorporated to facilitate endosomal release. Stable PF6/siRNA nanoparticles enter entire cell populations and rapidly promote endosomal escape, resulting in robust RNAi responses in various cell types (including primary cells), with minimal associated transcriptomic or proteomic changes. Furthermore, PF6-mediated delivery is independent of cell confluence and, in most cases, not significantly hampered by serum proteins. Finally, these nanoparticles promote strong RNAi responses in different organs following systemic delivery in mice without any associated toxicity. Strikingly, similar knockdown in liver is achieved by PF6/siRNA nanoparticles and siRNA injected by hydrodynamic infusion, a golden standard technique for liver transfection. These results imply that the peptide, in addition to having utility for RNAi screens in vitro, displays therapeutic potential

    Repeatable, Inducible Micro-RNA-Based Technology Tightly Controls Liver Transgene Expression

    No full text
    Inducible systems for gene expression emerge as a new class of artificial vectors offering temporal and spatial exogenous control of gene expression. However, most inducible systems are less efficient in vivo and lack the target-organ specificity. In the present study, we have developed and optimized an oligonucleotide-based inducible system for the in vivo control of transgenes in the liver. We generated a set of simple, inducible plasmid-vectors based on the addition of four units of liver-specific miR-122 target sites to the 3′untranslated region of the gene of interest. Once the vector was delivered into hepatocytes this modification induced a dramatic reduction of gene expression that could be restored by the infusion of an antagomir for miR-122. The efficiency of the system was tested in vivo, and displayed low background and strong increase in gene expression upon induction. Moreover, gene expression was repeatedly induced even several months after the first induction showing no toxic effect in vivo. By combining tissue-specific control elements with antagomir treatment we generated, optimized and validated a robust inducible system that could be used successfully for in vivo experimental models requiring tight and cyclic control of gene expression

    Patients With Bicuspid Aortic Stenosis Demonstrate Adverse Left Ventricular Remodeling and Impaired Cardiac Function Before Surgery With Increased Risk of Postoperative Heart Failure

    No full text
    Background: Differences in adverse cardiac remodeling between patients who have bicuspid (BAV) and tricuspid aortic valve (TAV) with severe isolated aortic stenosis (AS) and its prognostic impact after surgical aortic valve replacement remains unclear. We sought to investigate differences in preoperative diastolic and systolic function in patients with BAV and TAV who have severe isolated AS and the incidence of postoperative heart failure hospitalization and mortality. Methods: Two hundred seventy-one patients with BAV (n=152) or TAV (n=119) and severe isolated AS without coronary artery disease or other valvular heart disease, scheduled for surgical aortic valve replacement, were prospectively included. Comprehensive preoperative echocardiographic assessment of left ventricular (LV) diastolic and systolic function was performed. The heart failure events were registered during a mean prospective follow-up of 1260 days versus 1441 days for patients with BAV or TAV, respectively. Results: Patients with BAV had a more pronounced LV hypertrophy with significantly higher indexed LV mass ([LVMi] 134 g/m(2) versus 104 g/m(2), P&lt;0.001), higher prevalence of LV diastolic dysfunction (72% versus 44%, P&lt;0.001), reduced LV ejection fraction (55% versus 60%, P&lt;0.001), significantly impaired global longitudinal strain (P&lt;0.001), significantly higher NT-proBNP (N-terminal pro-brain natriuretic peptide) levels (P=0.007), and a higher prevalence of preoperative levosimendan treatment (P&lt;0.001) than patients with TAV. LVMi was associated with diastolic dysfunction in both patients with BAV and TAV. There was a significant interaction between aortic valve morphology and LVMi on LV ejection fraction, which indicated a pronounced association between LVMi and LV ejection fraction for patients with BAV and lack of association between LVMi and LV ejection fraction for patients with TAV. Postoperatively, the patients with BAV required significantly more inotropic support (P&lt;0.001). The patients with BAV had a higher cumulative incidence of postoperative heart failure admissions compared with patients with TAV (28.2% versus 10.6% at 6 years after aortic valve replacement, log-rank P=0.004). Survival was not different between patients with BAV and TAV (log-rank P=0.165). Conclusions: Although they were significantly younger, patients with BAV who had isolated severe AS had worse preoperative LV function and an increased risk of postoperative heart failure hospitalization compared with patients who had TAV. Our findings suggest that patients who have BAV with AS might benefit from closer surveillance and possibly earlier intervention

    Wnt/β-Catenin Stimulation and Laminins Support Cardiovascular Cell Progenitor Expansion from Human Fetal Cardiac Mesenchymal Stromal Cells

    Get PDF
    The intrinsic regenerative capacity of human fetal cardiac mesenchymal stromal cells (MSCs) has not been fully characterized. Here we demonstrate that we can expand cells with characteristics of cardiovascular progenitor cells from the MSC population of human fetal hearts. Cells cultured on cardiac muscle laminin (LN)-based substrata in combination with stimulation of the canonical Wnt/β-catenin pathway showed increased gene expression of ISL1, OCT4, KDR, and NKX2.5. The majority of cells stained positive for PDGFR-α, ISL1, and NKX2.5, and subpopulations also expressed the progenitor markers TBX18, KDR, c-KIT, and SSEA-1. Upon culture of the cardiac MSCs in differentiation media and on relevant LNs, portions of the cells differentiated into spontaneously beating cardiomyocytes, and endothelial and smooth muscle-like cells. Our protocol for large-scale culture of human fetal cardiac MSCs enables future exploration of the regenerative functions of these cells in the context of myocardial injury in vitro and in vivo
    corecore