20 research outputs found

    Glucocorticoid treatment and endocrine pancreas function: implications for glucose homeostasis, insulin resistance and diabetes

    Get PDF
    Glucocorticoids (GCs) are broadly prescribed for numerous pathological conditions because of their anti-inflammatory, antiallergic and immunosuppressive effects, among other actions. Nevertheless, GCs can produce undesired diabetogenic side effects through interactions with the regulation of glucose homeostasis. Under conditions of excess and/or long-term treatment, GCs can induce peripheral insulin resistance (IR) by impairing insulin signalling, which results in reduced glucose disposal and augmented endogenous glucose production. In addition, GCs can promote abdominal obesity, elevate plasma fatty acids and triglycerides, and suppress osteocalcin synthesis in bone tissue. In response to GC-induced peripheral IR and in an attempt to maintain normoglycaemia, pancreatic β-cells undergo several morphofunctional adaptations that result in hyperinsulinaemia. Failure of β-cells to compensate for this situation favours glucose homeostasis disruption, which can result in hyperglycaemia, particularly in susceptible individuals. GC treatment does not only alter pancreatic β-cell function but also affect them by their actions that can lead to hyperglucagonaemia, further contributing to glucose homeostasis imbalance and hyperglycaemia. In addition, the release of other islet hormones, such as somatostatin, amylin and ghrelin, is also affected by GC administration. These undesired GC actions merit further consideration for the design of improved GC therapies without diabetogenic effects. In summary, in this review, we consider the implication of GC treatment on peripheral IR, islet function and glucose homeostasis.This study was supported by grants from the Spanish foundations Ministry of Science and Innovation (BFU2013-42789; BFU2011-28358)This study was supported by grants from the European Foundation for the Study of Diabetes (EFSD / BI Basic Program and the Albert Renold Fellowship)This study was supported by grants from the Brazilian National Council for Scientific and Technological Development (CNPq 471397 / 2011-3

    Diet supplementation with green tea extract epigallocatechin gallate prevents progression to glucose intolerance in db/db mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Green tea was suggested as a therapeutic agent for the treatment of diabetes more than 70 years ago, but the mechanisms behind its antidiabetic effect remains elusive. In this work, we address this issue by feeding a green tea extract (TEAVIGO™) with a high content of epigallocatechin gallate (EGCG) or the thiazolidinedione PPAR-γ agonist rosiglitazone, as positive control, to <it>db/db </it>mice, an animal model for diabetes.</p> <p>Methods</p> <p>Young (7 week-old) <it>db/db </it>mice were randomized and assigned to receive diets supplemented with or without EGCG or rosiglitazone for 10 weeks. Fasting blood glucose, body weight and food intake was measured along the treatment. Glucose and insulin levels were determined during an oral glucose tolerance test after 10 weeks of treatment. Pancreata were sampled at the end of the study for blinded histomorphometric analysis. Islets were isolated and their mRNA expression analyzed by quantitative RT-PCR.</p> <p>Results</p> <p>The results show that, in <it>db/db </it>mice, EGCG improves glucose tolerance and increases glucose-stimulated insulin secretion. EGCG supplementation reduces the number of pathologically changed islets of Langerhans, increases the number and the size of islets, and heightens pancreatic endocrine area. These effects occurred in parallel with a reduction in islet endoplasmic reticulum stress markers, possibly linked to the antioxidative capacity of EGCG.</p> <p>Conclusions</p> <p>This study shows that the green tea extract EGCG markedly preserves islet structure and enhances glucose tolerance in genetically diabetic mice. Dietary supplementation with EGCG could potentially contribute to nutritional strategies for the prevention and treatment of type 2 diabetes.</p

    Matrix stiffness controls lymphatic vessel formation through regulation of a GATA2-dependent transcriptional program

    Get PDF
    Tissue and vessel wall stiffening alters endothelial cell properties and contributes to vascular dysfunction. However, whether extracellular matrix (ECM) stiffness impacts vascular development is not known. Here we show that matrix stiffness controls lymphatic vascular morphogenesis. Atomic force microscopy measurements in mouse embryos reveal that venous lymphatic endothelial cell (LEC) progenitors experience a decrease in substrate stiffness upon migration out of the cardinal vein, which induces a GATA2-dependent transcriptional program required to form the first lymphatic vessels. Transcriptome analysis shows that LECs grown on a soft matrix exhibit increased GATA2 expression and a GATA2-dependent upregulation of genes involved in cell migration and lymphangiogenesis, including VEGFR3. Analyses of mouse models demonstrate a cell-autonomous function of GATA2 in regulating LEC responsiveness to VEGF-C and in controlling LEC migration and sprouting in vivo. Our study thus uncovers a mechanism by which ECM stiffness dictates the migratory behavior of LECs during early lymphatic development.Peer reviewe

    Glucagon-like peptide-1 receptor activation reduces ischaemic brain damage following stroke in Type 2 diabetic rats

    Get PDF
    Diabetes is a strong risk factor for premature and severe stroke. The GLP-1R (glucagon-like peptide-1 receptor) agonist Ex-4 (exendin-4) is a drug for the treatment of T2D (Type 2 diabetes) that may also have neuroprotective effects. The aim of the present study was to determine the efficacy of Ex-4 against stroke in diabetes by using a diabetic animal model, a drug administration paradigm and a dose that mimics a diabetic patient on Ex-4 therapy. Furthermore, we investigated inflammation and neurogenesis as potential cellular mechanisms underlying the Ex-4 efficacy. A total of seven 9-month-old Type 2 diabetic Goto–Kakizaki rats were treated peripherally for 4 weeks with Ex-4 at 0.1, 1 or 5 μg/kg of body weight before inducing stroke by transient middle cerebral artery occlusion and for 2–4 weeks thereafter. The severity of ischaemic damage was measured by evaluation of stroke volume and by stereological counting of neurons in the striatum and cortex. We also quantitatively evaluated stroke-induced inflammation, stem cell proliferation and neurogenesis. We show a profound anti-stroke efficacy of the clinical dose of Ex-4 in diabetic rats, an arrested microglia infiltration and an increase of stroke-induced neural stem cell proliferation and neuroblast formation, while stroke-induced neurogenesis was not affected by Ex-4. The results show a pronounced anti-stroke, neuroprotective and anti-inflammatory effect of peripheral and chronic Ex-4 treatment in middle-aged diabetic animals in a preclinical setting that has the potential to mimic the clinical treatment. Our results should provide strong impetus to further investigate GLP-1R agonists for their neuroprotective action in diabetes, and for their possible use as anti-stroke medication in non-diabetic conditions

    Disturbed Islet Function and Alterations in Islet Protein Expression

    No full text
    Pancreatic β-cells sense the concentration of glucose in the systemic circulation through metabolism of the sugar molecule. Failure to correlate the blood sugar concentration to an appropriate metabolic signal disrupts the function of the β-cell as a controller of glucose homeostasis and may contribute to the development of type 2 diabetes mellitus. Release of insulin is pulsatile and this thesis presents data that support that metabolism drives such pulsatile release. It is also found that increase in insulin release in response to elevation of the glucose concentration is only seen when the rise in glucose induces a prompt and sustained increase in mitochondrial metabolism. Such activation of mitochondrial metabolism depended on the metabolic state of the β-cell prior to the glucose challenge. In this context, prolonged periods of elevated levels of fatty acids are harmful to the pancreatic β-cell. To study the protein expression changes induced by fatty acids a protocol for islet protein profiling and identification of differently expressed proteins were developed. By using this protocol it was discovered that oleate decreased the cellular level of the chaperone peptidyl-prolyl isomerase B. The protocol was also used to study protein expression in islets obtained from mice fed a high-fat and/or a high-sucrose diet. Excess of glucocorticoids in the systemic circulation also cause a diabetic phenotype. Tissue response to glucocorticoids is regulated by the intracellular concentration of the active form of glucocorticoids, which is formed from the inactive form by the enzyme 11β-hydroxysteroid dehydrogenase type 1. It was found that pancreatic islets produce 11β-HSD1 protein in relation to substrate availability and that the amount of islet 11β-HSD1 protein was negatively correlated with insulin secretion

    An inducible Cldn11-CreERT2 mouse line for selective targeting of lymphatic valves

    No full text
    Luminal valves of collecting lymphatic vessels are critical for maintaining unidirectional flow of lymph and their dysfunction underlies several forms of primary lymphedema. Here, we report on the generation of a transgenic mouse expressing the tamoxifen inducible CreERT2 under the control of Cldn11 promoter that allows, for the first time, selective and temporally controlled targeting of lymphatic valve endothelial cells. We show that within the vasculature CLDN11 is specifically expressed in lymphatic valves but is not required for their development as mice with a global loss of Cldn11 display normal valves in the mesentery. Tamoxifen treated Cldn11-CreERT2 mice also carrying a fluorescent Cre-reporter displayed reporter protein expression selectively in lymphatic valves and, to a lower degree, in venous valves. Analysis of developing vasculature further showed that Cldn11-CreERT2-mediated recombination is induced during valve leaflet formation, and efficient labeling of valve endothelial cells was observed in mature valves. The Cldn11-CreERT2 mouse thus provides a valuable tool for functional studies of valves.Title in Web of Science: An inducible Cldn11-CreER(T2) mouse line for selective targeting of lymphatic valves</p

    Immune-interacting lymphatic endothelial subtype at capillary terminals drives lymphatic malformation

    Get PDF
    Oncogenic mutations in PIK3CA, encoding p110α-PI3K, are a common cause of venous and lymphatic malformations. Vessel type-specific disease pathogenesis is poorly understood, hampering development of efficient therapies. Here, we reveal a new immune-interacting subtype of Ptx3-positive dermal lymphatic capillary endothelial cells (iLECs) that recruit prolymphangiogenic macrophages to promote progressive lymphatic overgrowth. Mouse model of Pik3ca-driven vascular malformations showed that proliferation was induced in both venous and lymphatic ECs but sustained selectively in LECs of advanced lesions. Single-cell transcriptomics identified the iLEC population, residing at lymphatic capillary terminals of normal vasculature, that was expanded in Pik3ca mice. Expression of pro-inflammatory genes, including monocyte/ macrophage chemokine Ccl2, inPik3ca-iLECs was associated with recruitment of VEGF-C-producing macrophages. Macrophage depletion, CCL2 blockade, or anti-inflammatory COX-2 inhibition limited Pik3ca-driven lymphangiogenesis. Thus, targeting the paracrine crosstalk involving iLECs and macrophages provides a new therapeutic opportunity for lymphatic malformations. Identification of iLECs further indicates that peripheral lymphatic vessels not only respond to but also actively orchestrate inflammatory processes
    corecore