614 research outputs found

    Poleward Deflection of Storm Tracks

    Get PDF

    The Life Cycle of Baroclinic Eddies in a Storm Track Environment

    Get PDF

    Subpolar High Anomaly Preconditioning Precipitation over South America

    Get PDF
    The mechanisms associated with the intraseasonal variability of precipitation over South America during the spring season are investigated with emphasis on the influence of a quasi-stationary anomalous circulation over the southeastern South Pacific Ocean (SEP). A spectral analysis performed to the bandpass- filtered time series of daily precipitation anomalies for the La Plata Basin (LPB) and the South Atlantic convergence zone (SACZ) regions revealed several statistically relevant peaks corresponding to periods of roughly 23 days and 14–16 days—the lower (higher) frequency peaks more prevalent for the SACZ (LPB). The large-scale circulation patterns preconditioning precipitation variability over both regions were explored by means of a regression analysis performed on the daily 500-hPa geopotential anomaly field provided by the NCEP–NCAR reanalysis dataset. The most prominent feature of the regression fields is the presence of a quasi-stationary anomalous anticyclonic (cyclonic) circulation over the southeastern South Pacific Ocean associated with positive rainfall anomalies over the LPB (SACZ) and, emanating from that high (low), an external Rossby wave propagating northeastward toward the South American continent. The synoptic-scale activity, quantified in terms of a frontal activity index, showed a strong influence on precipitation over the LPB and to a lesser extent over the SACZ. Moreover, the frontal activity is actually modulated by the anomalous high circulation over the SEP region. The behavior of this anomalous circulation may be supported by a positive feedback mechanism that can enhance the response of the high anomaly itself, which in turns reinforces the Rossby wave train propagating toward the South American continent.Fil: Solman, Silvina Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmosfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmosfera; ArgentinaFil: Orlanski, Isidoro. University of Princeton; Estados Unido

    Coastal ocean wind fields gauged against the performance of an ocean circulation model

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 31 (2004): L14303, doi:10.1029/2003GL019261.Atmosphere model-derived flux fields are used to force coastal ocean models. Coarse resolution and incomplete boundary layer dynamics limit the accuracy of these forcing fields and hence the performance of the ocean models. We address this limitation for the west Florida shelf using optimal interpolation to blend winds measured in situ with winds produced by model analyses. By improving the coastal wind field we improve the fidelity between currents modeled and currents observed. Comparisons between momentum analyses performed independently from the model and the data demonstrate the fidelity to be of a correct dynamical basis. We conclude that the primary limitation to coastal ocean model performance lies with the boundary conditions.Support was provided by the Office of Naval Research, Grant #s N00014-98-1-0158 and N00014-02-1-0972

    The role of linear wave refraction in the transient eddy-mean flow response to tropical Pacific SST anomalies

    Get PDF
    The midlatitude response to tropical Pacific SST anomalies involves changes in transient eddy propagation, but the processes leading to the transient eddy changes are still not clear. In a recent study, we used a series of controlled general circulation model (GCM) experiments in which an imposed tropical Pacific sea-surface temperature (SST) anomaly is turned on abruptly and the response is analyzed in terms of its high- and low-frequency parts, to show that the changes in transient eddies induced by El Niño Southern Oscillation (ENSO) arise from changes in wave refraction on the altered mean flow. In this work, we use a quasi-geostrophic linear model and a linear stationary wave model, to interpret the GCM experiments and obtain the sequence of events that lead from a tropical SST anomaly to the quasi-equilibrium change in the mean and transient atmospheric circulation. The initial direct response of the mean flow is confined to the tropical and subtropical Pacific, similar to what is obtained from a stationary wave model. This tropical–subtropical mean flow change initiates a transient eddy response, which induces a midlatitude mean flow anomaly. The wave–mean flow system evolves towards a state in which the eddy anomalies maintain the mean flow anomalies, allowing them to persist. It is further shown that, while eddy momentum fluxes persistently accelerate and decelerate the subtropical and midlatitude mean flow, the eddy heat flux effect on the zonal mean flow is much more variable, and only marginally significant. The linear quasi-geostrophic model calculations capture the evolution of eddy momentum flux anomalies equatorwards of 60°N quite well, suggesting linear wave refraction can explain the midlatitude ENSO anomalies. However, other processes, like stationary waves or changes in the nonlinear stage of eddy life cycles, are needed to explain the ENSO-related anomalies at high latitudes, polewards of around 60°N

    A new outflow boundary condition

    Full text link
    Boundary conditions come from Nature. Therefore these conditions exist at natural boundaries. Often, owing to limitations in computing power and means, large domains are truncated and confined between artificial synthetic boundaries. Then the required boundary conditions there cannot be provided naturally and there is a need to fabricate them by intuition, experience, asymptotic behaviour and numerical experimentation. In this work several kinds of outflow boundary conditions, including essential, natural and free boundar conditions, are evaluated for two flow and heat transfer model problems. A new outflow boundary condition, called hereafter the free boundary condition , is introduced and tested. This free boundary condition is equivalent to extending the validity of the weak form of the governing equations to the synthetic outflow instead of replacing them there with unknown essential or natural boundary conditions. In the limit of zero Reynolds number the free boundary condition minimizes the energy functional among all possible choices of outflow boundary conditions. A review of results from applications of the same boundary conditions to several other flow situations is also presented and discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50207/1/1650140506_ftp.pd

    Application of a nested-grid ocean circulation model to a shallow coastal embayment: Verification against observations

    Get PDF
    A nested-grid ocean circulation modeling system is used to study the response of Lunenburg Bay in Nova Scotia, Canada, to local wind-forcing, tides, remotely generated waves, and buoyancy forcing in the summer and fall of 2003. Quantitative comparisons between observations and model results demonstrate that the modeling system reproduces reasonably well the observed sea level, temperature, salinity, and currents in the bay. Numerical results reveal that the spatial and temporal variability of temperature and salinity in the bay during the study period is mainly forced by the local wind stress and surface heat/freshwater fluxes, with some contribution from tidal circulation. In particular, the local heat balance on the monthly timescale is dominated by cooling due to vertical advection and warming due to horizontal advection and net surface heat flux, while high-frequency variations (timescales of 1–30 days) are mainly associated with vertical advection, i.e., wind-induced upwelling and downwelling. There is also a strong baroclinic throughflow over the deep water region outside Lunenburg Bay that is strongly influenced by wind-forcing. The vertically integrated momentum balance analysis indicates a modified geostrophic balance on the monthly timescale and longer, and is dominated by the pressure term and wind minus bottom stress in the high-frequency band

    Laboratory experiments on eddy generation by a buoyant coastal current flowing over variable bathymetry

    Get PDF
    Author Posting. © American Meteorological Society, 2006. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 36 (2006): 395-411, doi:10.1175/JPO2857.1.Irminger rings are warm-core eddies formed off the west coast of Greenland. Recent studies suggest that these eddies, which are implicated in the rapid springtime restratification of the Labrador Sea, are formed by an internal instability of the West Greenland Current (WGC), triggered by bathymetric variations. This study seeks to explore the effect of the magnitude and downstream length scale of bathymetric variations on the stability of a simple model of the WGC in a series of laboratory experiments in which a buoyant coastal current was allowed to flow over bathymetry consisting of piecewise constant slopes of varying magnitude. The currents did not form eddies over gently sloping bathymetry and only formed eddies over steep bathymetry if the current width exceeded the width of the sloping bathymetry. Eddying currents were immediately stabilized if they flowed onto gently sloping topography. Bathymetric variations that persisted only a short distance downstream perturbed the flow locally but did not lead to eddy formation. Eddies formed only once the downstream length of the bathymetric variations exceeded a critical scale of about 8 Rossby radii. These results are consistent with the observed behavior of the WGC, which begins to form Irminger rings after entering a region where the continental slope abruptly steepens and becomes narrower than the WGC itself in a region spanning about 20–80 Rossby radii of downstream distance.The authors gratefully acknowledge the National Science Foundation (Grant OCE- 9810657) and the Office of Naval Research (Grant N00014-97-1-0934) for their support of the 2003 WHOI Geophysical Fluid Dynamics Summer School where much of the research presented in this paper was performed. CLW received additional support from the Office of Naval Research Grant N00014-98-1-0813
    • …
    corecore