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A nonlinear oscillator describing storm track variability†
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We construct a two-variable model that describes the interaction between local baroclinicity
and eddy heat flux in order to understand aspects of the variance in storm tracks. It is a
heuristic model for diabatically forced baroclinic instability close to baroclinic neutrality.
The two-variable model has the structure of a nonlinear oscillator. It exhibits some realistic
properties of observed storm track variability, most notably the intermittent nature of
eddy activity. This suggests that apparent threshold behaviour can be more accurately and
succinctly described by a simple nonlinearity. An analogy is drawn with the triggering of
convective events.
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1. Introduction

The nonlinear phase of a baroclinic lifecycle is usually understood
as an extension of the linear instability problem, in that one
is presented with a baroclinically unstable background state in
which an instability evolves. The main difference is that, in a
nonlinear life-cycle experiment, the instability is allowed to grow
to finite amplitude and this will modify the background state.
However, it can be argued that this is an unusual set-up to study
naturally occurring baroclinic lifecycles, as very unstable basic
states cannot be widespread by virtue of their instability.

By analogy, when studying the evolution of thermals, we
would not normally start with a statically unstable state and let
the instability evolve. We would start with a statically stable state
and then slowly heat the bottom surface. As a result, the basic state
would at some point cross the instability threshold and thermals
would develop. Such a set-up is appropriate for studying a dry
convecting boundary layer. The two key differences between this
set-up and the set-up starting from a statically unstable state are
that the system (i) is diabatically forced and (ii) mostly resides
close to marginal stability. We argue that the nonlinear phase
of baroclinic instability must also be understood in such a way:
diabatically forced and close to baroclinic neutrality. In this article,
we describe a heuristic model for baroclinic instability and storm
track variability based on this viewpoint.

Storm tracks are maintained by a balance between the
production of potential energy, which can be identified by
baroclinicity, and the erosion of this potential energy by the eddies
in the storm track, which can be identified by transient eddy heat
fluxes (Chang and Orlanski, 1993). Maxima in either of these fields
can be used to diagnose the location of storm tracks (Hoskins and
Valdes, 1990). However, there is a potential ambiguity regarding
the maxima of baroclinicity in relation to the maxima of the

†The copyright for this article was changed on 9 April 2014 after original online
publication.

eddy activity: a high baroclinicity presumably means a favourable
environment for eddy growth, but a high number of eddies
would, all else being equal, correspond to a low baroclinicity.
The first aspect is, for example, reflected in studies of energy
balance models (e.g. Sellers, 1969; Hwang and Frierson, 2010),
where energy fluxes increase linearly with temperature gradients.
The second aspect reflects the well-established view that eddies
feed on the available potential energy stored in the temperature
gradient (Holton and Hakim, 2012). Here we construct a simple
two-variable model describing these conflicting aspects. We find
that the model corresponds to a nonlinear oscillator, which
exhibits some important properties of the observed variability
of the storm track, such as the observed intermittent, bursting
behaviour of the meridional heat flux in storm tracks (Swanson
and Pierrehumbert, 1997; Messori and Czaja, 2013a).

Our model is perhaps the simplest possible model that describes
the nonlinear growth of an instability in a background state, where
the feedback of the instability on the background state is taken into
account. It may appear surprising that this feedback in our model
changes exponential growth to oscillatory behaviour, although
this has been observed in previous studies of frontal instability
(e.g. Spall, 1997), as well as in weakly nonlinear extensions of
unforced barcolinic instability theory (Pedlosky, 1987, ch 7).
In other words, the feedback to the background state becomes
strong enough to dominate, and in our case indeed reverse, the
exponential growth of the instability.

Such behaviour is normally associated with states near marginal
instability. Indeed, the two competing interactions between
baroclinicity and eddies admit an equilibrium state close to
neutrality, where the local diabatic production of instability is
consumed rapidly by the instability itself. Such a near-neutral
state is thought to reflect the mean state of the atmosphere
(Stone, 1978; Hall and Sardeshmukh, 1998) and is consistent
with a predictive scaling relation for the height of the tropopause
(Lindzen, 1993). However, the latter arguments do not describe
the variance of the state.

c© 2014 The Authors. Quarterly Journal of the Royal Meteorological Society published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.
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One way to understand the variance induced by the competing
effects of eddy growth on high baroclinicity and decay of
baroclinicity due to those eddies is to think of a gradual diabatic
build-up of instability which, above a certain threshold, will be
released by the eddies. Such models are perhaps reminiscent of
archetypal models of collapsing sand-piles, earthquakes, perco-
lation networks and many more model systems, associated with
phase transitions, scaling behaviour and self-organized criticality
(Burridge and Knopoff, 1967; Bak et al., 1987). Here, we do not
explore any formal associations between such models and our
proposed model, except to indicate that our model, like models
of self-organized criticality, also includes an external supply of
instability that is released by eddy growth. In contrast to models
of self-organized criticality, our release mechanism is much more
simple and does not admit any scaling behaviour. Ideas of thresh-
old behaviour have also been successfully applied to the release of
convective instability (Peters and Neelin, 2006; Yano et al., 2012).

Such models of near-critical variance are complex and can lead
to rich behaviour. Here we simplify this picture drastically by
going to first principles on what we know about the expected
interaction between baroclinicity and eddies. It turns out that this
naturally leads to an oscillator equation with a simple nonlinearity.
The model is derived and discussed in the next section. In
section 3, we present a first comparison of our nonlinear oscillator
model with observed data. Section 4 contains some concluding
remarks and an analogy with convective instability.

2. A nonlinear oscillator model

Here, we derive and discuss a two-variable model describing
the interaction between baroclincity and baroclinic eddies. We
take the baroclinicity s to be proportional to the horizontal
temperature gradient near the surface,

s = −kTy. (1)

The baroclinicity represents the maximum growth rate of
baroclinic eddies, such as in the archetypal Eady model for
baroclinic instability. The fastest growing mode will likely
dominate the baroclinic activity locally, so that the baroclinicity
will provide the correct dominant time-scale for the growth of the
eddies. Alternatively, the growth could be locally dominated by
non-modal growth, but in this case the baroclinicity also provides
the relevant bulk time-scale for the baroclinic growth. This is
mainly an expression of the fact that all baroclinic growth extracts
its energy from the vertical wind shear in the background state and
this vertical shear then provides the physically relevant time-scale.

The evolution of the baroclinicity can be described in terms
of a mean imposed forcing and an erosion by eddy heat fluxes.
The imposed forcing of the baroclinicity represents the diabatic
tendency to increase the temperature gradient between Pole
and Equator and independent dissipative tendencies due to
eddies generated upstream of the high-baroclinicity area (e.g.
lee cyclogenesis over North America for the North Atlantic storm
track), as well as the tendencies due to the mean winds, such as
those described by a frontal deformation field perhaps imposed by
planetary stationary waves. The effect of an imposed deformation
field on linear instability of baroclinic (Spall, 1997), barotropic
(Dritschel et al., 1991) and surface Rossby waves (Harvey and
Ambaum, 2010) can have a complicated interaction with the linear
instability. A deformation field typically increases the potential
for instability but at the same time kinematically suppresses the
growing wave. For example, in the case described in Harvey and
Ambaum (2010) these two competing effects become important at
different times in the evolution. In the present set-up, we simplify
the combined effect of diabatic heating and imposed large-scale
flow by a simple, in our case constant, positive tendency of the
baroclinicity, denoted F:

ṡ = F + k(v′T′)yy = F − kl2 v′T′, (2)

where in the last equality we assumed that the meridional extent
of the eddy heat flux is dominated by a meridional scale of 1/l.
Hereafter we will define the scaled eddy heat flux as

f = kl2 v′T′. (3)

The eddy heat flux itself depends on the precise structure of the
eddies, but it scales with the square of amplitude of eddies. The
baroclinic instability therefore leads to a growth rate of 2s for the
eddy heat flux. We also expect dissipative processes to occur and
we will model these as a fixed linear decay rate of 2s0 (see Hall and
Sardeshmukh, 1998). Thus, we find the following set of two equa-
tions for the evolution of the baroclinicity and the eddy heat flux:

ṡ = F − f , (4a)

ḟ = 2(s − s0) f . (4b)

The second equation introduces a nonlinearity, because the
growth rate of the heat flux varies with the heat flux itself.
The dissipative processes described by s0 can be absorbed in a
constant offset of the baroclinicity. It turns out that the solution
for the excess baroclinicity, s − s0, is a symmetric oscillation,
which means that s itself oscillates around a positive value of s0.

This set of equations cannot be solved analytically in terms of
tabulated functions, but we can transform the set such that their
behaviour becomes clear. This is achieved by transforming the
heat flux f to a new flux variable, y, as

y = ln(f /F), (5)

a transformation that is well-defined because f can be assumed
to be positive-definite. With the new heat flux variable, the above
set of equations becomes

ṡ = F (1 − ey), (6a)

ẏ = 2(s − s0). (6b)

This set of first-order equations corresponds to the following
nonlinear oscillator equation in y:

ÿ = 2F (1 − ey). (7)

For small y, i.e. situations where the eddy heat flux f closely
compensates for the imposed forcing F, we find a linear oscillation
equation with frequency

√
2F and from Eq. (6b) it follows that

the baroclinicity s oscillates about s0 with the same frequency and
a phase of π/2 ahead of the heat flux, as expected from causality
arguments.

To understand the behaviour of this equation for larger
deviations, we can write the above nonlinear oscillation in terms
of a potential V as

ÿ = −∂V/∂y, with V(y) = 2F (ey − y − 1). (8)

We include an offset in the potential such that the zero point of
the potential corresponds to y = 0. Figure 1 shows the potential
as a function of y. The potential is positive-definite, everywhere
concave and asymmetric.

From the potential form of the equation it becomes clear that
the nonlinear oscillator has a Lyapunov function, or conserved
‘energy’ E, defined by

E = 1

2
ẏ2 + V(y). (9)

The different behaviours of the nonlinear oscillator are
parametrized by the value of this energy. For example, the
extreme values of y are defined by the implicit equation V(y) = E.
This is a transcendental equation, which has trivial asymptotic
solutions for small and large E. For small E and y, the potential
is approximated by V(y) ≈ Fy2, so that the extremes of the
oscillation correspond to y = ±√

E/F. In other words, y oscillates

c© 2014 The Authors. Quarterly Journal of the Royal Meteorological Society
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Figure 1. Potential V(y) for the nonlinear oscillator in Eq. (8), scaled with 2F,
as a function of the transformed heat flux y. The dashed lines correspond to
the two asymptotic forms for small y, V(y)/2F ≈ y2/2, and for negative y,
V(y)/2F ≈ −y − 1.

symmetrically around y = 0 with a frequency of
√

2F. Such an
oscillation corresponds to the untransformed heat flux f varying
between F ± √

EF with a frequency of
√

2F. Equation (6b) then
indicates that s also oscillates with a frequency of

√
2F, between

values of s0 ± √
E/2.

The behaviour for large E is more interesting, with different
asymptotic behaviour for positive and negative values of y. Using
the language of a mass oscillating on a nonlinear spring, we
find that for positive y the spring is hardening and for negative
y the spring is softening and asymptoting to a constant-force
spring. The extremes of the oscillation in y are approximated
by [−E/2F − 1, ln(1 + E/2F)], so the eddy heat flux f varies
in the range [Fe−E/2F−1, F + E/2]. (The top value underestimates
the real maximum by a sizeable fraction.) For large E, therefore,
the heat flux remains low (negative y) for a substantial period
of time and then increases rapidly to a value of F + E/2,
before collapsing to low values again. According to Eq. (4a),
the baroclinicity builds up nearly linearly during the periods of
low f and then collapses to a value below s0 before the quasi-
linear build-up starts again. This type of behaviour resembles
a relaxation oscillation, although in most models of relaxation
oscillators explicit threshold properties are used.

We can derive several more analytical properties of the system
in the various asymptotic regimes, but these may be considered less
relevant for the application of this system, given the simplifications
used to derive the original set of equations. Instead, we illustrate
numerical solutions for various values of E in Figure 2. The
figure illustrates the transition from a simple oscillation for low
E to a relaxation oscillation for larger E. Also notable is the shift
to a larger period for larger E, corresponding to the increasing
time spent at low values of f . In other words, the nonlinearity
decouples the time-scale between two bursts and the time-scale
of the burst itself.

Despite the obvious simplifications in this model, the ensuing
relaxation oscillation appears to have several relevant implications
for the observed variance in storm tracks. We will discuss these
in more detail in the next section and in the concluding section.

3. Observational evidence

We have analysed the variations in baroclinicity and heat flux
on the upstream side of the North Atlantic storm track using
the December–January–February (DJF) data of the ERA-40
reanalysis dataset, spanning 1957–2002. Climatological results
are illustrated in Figure 3. As in Hoskins and Valdes (1990), the
local baroclinicity at 775 hPa was calculated as

s = 0.31
f

N

∂u

∂Z
, (10)

where f = 2� sin φ and N = √
g d ln θ/dZ. The height deriva-

tives of u and θ were calculated using a second-order centred
finite-difference approximation between 700 and 850 hPa, using

0
1
2

0
1
2
3

-2
-1
0
1
2
3
4
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6
7
8
9

heatflux

baroclinicity

Figure 2. Time series of heat flux f (solid lines), rescaled with F, and excess
baroclinicity s − s0 (dashed lines), rescaled with

√
F. The time is rescaled with

the natural frequency
√

2F of the system and each tick mark corresponds to one
period of this natural frequency. The three panels correspond to E/2F = 0.1,
E/2F = 1 and E/2F = 10.

Figure 3. Polar stereographic view of the baroclinicity (solid contours, displaying
values of 0.5 and 0.6 day−1) and heat flux (dashed contours, displaying values of
10 and 20 K m s−1) averaged over the 1957–2002 DJF winters. The sector used for
spatial averaging is outlined by the thin solid line.

geopotential height (Z) as the vertical coordinate. Hoskins and
Valdes (1990) note that the baroclinicity at these levels is dom-
inated by wind-shear variations rather than stability variations
and we confirmed this to be true for the ERA-40 reanalysis date
set as well. By the thermal wind relation, we then find that the
above expression for baroclinicity is essentially the same as the
expression used in Eq. (1). In order to analyze the typical baro-
clinicity related to the storm track, a sector spanning 30–50◦N
and 30–80◦W was selected for spatial averaging to obtain a time
series for baroclinicity, as illustrated in Figure 3.

The perturbations used to calculate the instantaneous transient
heat flux between 700 and 925 hPa were computed by subtracting
10 day running means (which were calculated using a Lanczos
filter) of instantaneous values for the vertically averaged v and
T. This 10 day cut-off filter is suitable for representing high-
frequency eddies (Athanasiadis and Ambaum, 2009; Lorenz
and Hartmann, 2001). Again, a specific sector of the North
Atlantic, spanning 30–60◦N and 30–80◦W, was selected for
spatial averaging to obtain a time series for the eddy heat flux.

The high heat-flux regions in Figure 3 are not precisely co-
located with the high baroclinicity regions, as also emphasized
in Chang and Orlanski (1993). Indeed, we expect the heat-flux
maxima to be located somewhat downstream of the baroclinicity
maxima, although for the Atlantic region this offset is fairly small,
possibly due to lee cyclogenesis over North America.

c© 2014 The Authors. Quarterly Journal of the Royal Meteorological Society
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Figure 4. Time series of heat flux (solid lines, left axes, units k m s−1) and baroclinicity (dashed lines, right axes, units day−1) for the DJF winter, for years 1995–1999
((a)–(e)). The time is in days since 1 December of the indicated year. The heat flux and the baroclinicity are evaluated at the upstream side of the North Atlantic storm
track, as indicated in Figure 3.

Figure 4 shows a selection of time series for the winters
1995–1999. These were chosen for no particular reason other
than that they reflect the type of variance within a winter season
and variance across different years. It is clear from these time
series that the heat flux tends to come in bursts, reminiscent of
the nonlinear oscillator model at higher energies. The observed
baroclinicity does not vary as drastically as the heat flux, but
it can be seen that maxima of the heat flux tend to coincide
with periods where the baroclinicity decreases. Additionally, the
strictly periodic behaviour of the oscillator model is not really
reflected in the observations, although periods of quasi-periodic
behaviour appear to occur, for example, in the first half of the
1998–1999 winter season.

Figure 5 shows a composite (superposed epoch) centred
at maxima of the heat flux, where only maxima larger than
30 K m s−1 were selected. This corresponds to an average of five
events per winter season. The composite is only weakly dependent
on the chosen threshold value. The composite heat flux shows a
clear peak and a uniform, symmetric decay away from the central
time. This is not an entirely conclusive test, as any signal will
show such behaviour under composites whenever the temporal
autocorrelation decays as it does in the figure. However, the
time series in Figure 4 seem to indicate that the composite is
representative of the behaviour of the observed bursts in the heat
flux. The periodic behaviour of the oscillator model is not evident
in the composite, indicative of a lack of periodicity or a weak
quasi-periodicity in the data. However, the heat flux beyond 2 day
lags does not decay to very low values in the composite, contrary
to the quiescent periods in Figure 4. This indicates the presence
of further bursts in heat flux at those lags in the full data set.

Figure 5 further shows that the composite excess baroclinicity
(here calculated as the excess over a running mean which,
according to our model, is expected to coincide with the mean
linear dissipation rate s0) is also consistent with the nonlinear
oscillator model. The peak in composite heat flux coincides with
a reduction in the composite baroclinicity. The maximum of
decrease in baroclinicity is in fact lagged slightly ahead of the
peak in heat flux, perhaps indicating that the eddy heat flux is

0
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40

-5 -4 -3 -2 -1 0 1 2 3 4 5

-0.1

-0.05

0

0.05

0.1

time/days

heat flux/(Kms-1)

baroclinicity/day-1

Figure 5. Composite of heat flux and baroclinicity for the winters of 1957–2001,
centred around the maxima of the heat flux. The solid line is the median value
of the heat flux and the dashed line is the median value of the baroclinicity. The
shading corresponds to the interquartile range of each quantity. The anomalous
(excess) baroclinicity has been plotted; the mean offset in the baroclinicity is
0.46 day−1.

not completely coincident with the eddy processes that consume
the available potential energy. It is possible that other measures
of eddy growth rate and eddy activity show a phase relation that
is more aligned with that expected from the oscillator model.

The build-up of baroclinicity between bursts of heat flux, as
evident in the oscillator model, is not so clear in the composite
because of the regression to the mean away from the central
time. Furthermore, the interquartile range of the baroclinicity
is large, so any trends will be hard to observe. Nonetheless, the
time series in Figure 4 show anecdotal evidence of a build-up
of baroclinicity ahead of a burst in heat flux and the fact that the
composite baroclinicity shows a clear decay around the peak of
the heat flux implies that, away from the peaks, the baroclinicity
has to build up on average.

The lack of periodicity in the observations is evident. The
waiting time distribution shows a broad distribution (perhaps
consistent with Messori and Czaja (2013b)) with, however,
a possible peak at short waiting times. The statistics are not
strong enough to favour either possibility, without independent
evidence for the underlying models. It is hard to make further
quantitative links between our observations and the oscillator
model. For example, choosing a lower threshold to define the
heat flux maxima will result in more events and, correspondingly,

c© 2014 The Authors. Quarterly Journal of the Royal Meteorological Society
published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.

Q. J. R. Meteorol. Soc. 140: 2680–2684 (2014)



2684 M. H. P. Ambaum and L. Novak

a shift to shorter waiting times. In the context of our nonlinear
oscillator model, this could be related to higher values of F or
smaller values of E, or both.

4. Concluding remarks

The nonlinear oscillator model described in section 2 displays
some salient features that can be seen in observations, here
illustrated with data from the North Atlantic storm track.

Firstly, the heat flux does not appear to be uniform in time,
or even uniformly random, but comes in bursts of activity.
This aspect of the heat flux has been observed before (Swanson
and Pierrehumbert, 1997; Messori and Czaja, 2013a). In the
full three-dimensional atmosphere, this burst corresponds to the
development of individual systems or periods of high storm
activity. In the model, the time-scale between systems is set by the
forcing of the mean temperature gradient F, which restores the
baroclinicity after its collapse. However, the time-scale between
individual bursts is non-trivially associated with the time-scale
of the forcing because of the nonlinear nature of the system.
Nonlinear oscillations operating at higher energies will have
longer time-scales for the same forcing time-scale.

Secondly, the baroclinicity seems to build up to a maximum
value before collapsing to a stable state in which the dissipative
processes dominate the baroclinic instability and the environment
is not conducive to system growth. This appears to correspond to
the increasing northward tilt of the storm track before it returns to
a more zonal regime, following a mechanism for storm-track tilt
proposed by Orlanski (1998). This latter aspect is currently being
investigated in detail and will be reported on in a separate article.
Indications of this behaviour in time can be gleaned, for example,
from Frame et al. (2011, 2013) and Franzke et al. (2011), where
the North Atlantic eddy-driven jet is seen to tilt progressively
northeastward before collapsing back to a more zonal direction.

Thirdly, on the time-scales of this storm track variability, there
is a non-trivial, out-of-phase relationship between baroclinicity
and heat flux. Although the spatial maxima of the two quantities
have both been used to diagnose the locations of storm tracks,
on synoptic time-scales they do not vary together. This reconciles
the seemingly contradictory observation that high baroclinicity
should be conducive to high heat fluxes, but at the same time
high heat fluxes should lead to low baroclinicity.

There are some obvious caveats to our nonlinear oscillator
model. The most serious is possibly the lack of a clear periodicity
in the observed data. Indeed, recent evidence (Messori and Czaja,
2013b) indicates that meridional heat flux covers a very broad
range of frequencies, from synoptic to planetary-wave scales. In
response, we would argue that the strictly periodic behaviour of
the model depends on the external forcing F being constant in
time. Given that the forcing describes both radiative and kinematic
effects, it would follow that the forcing in fact would vary over
time. If the time-scale of this variation is longer than the time-scale
of the forcing itself, the relevant behaviour of our model does not
change, but the strict periodicity of the model will be broken.

There appears to be a strong analogy in the formation of vertical
convection. In fact, Yano and Plant (2012) derive a formally
equivalent set of equations based on mass-flux schemes (their Eqs
(19a) and (19b)). In convective events, we generally observe a
build-up of convective available potential energy (CAPE), which
may then be released by a convective event (Yano et al., 2012).
The typical interpretation would be that the convection acts
on a shorter time-scale than the build-up of CAPE, which
is implicit in the quasi-equilibrium assumption for convective
parametrizations. Convective parametrizations contain triggers
where a convective event is initiated when a certain threshold
of instability is achieved. The present nonlinear oscillator model
gives a different perspective, in that we do not need a trigger to
achieve the same effect. The nonlinearity gives the impression
of trigger behaviour: a sudden onset of a perturbation, which

stabilizes the flow on a short time-scale. The nonlinearity also
gives the impression of time-scale separation, where the time-scale
of an individual perturbation is much shorter than the time-scale
between perturbations. The difference between these time-scales
is regulated by the energy parameter (the amplitude) in our
oscillator model. If such a simple nonlinearity can be included
in convective parametrizations, then we do not need to invoke
the quasi-equilibrium assumption and we can remove switches
from convective parametrizations. This has implications for the
construction of adjoint numerical models.
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