71 research outputs found

    Parametric-gain approach to the analysis of single-channel DPSK/DQPSK systems with nonlinear phase noise

    Full text link

    Covalent capture of oriented calix[6]arene rotaxanes by a metal-free active template approach

    Get PDF
    We describe the active template effect of a calix[6]arene host towards the alkylation of a complexed pyridylpyridinium guest. The acceleration of the reaction within the cavity is significant and rim-selective, enabling the efficient preparation of rotaxanes with full control of the mutual orientation of their nonsymmetric components

    Plugging a bipyridinium axle into multichromophoric calix[6]arene wheels bearing naphthyl units at different rims

    Get PDF
    Tris-(N-phenylureido)-calix[6]arene derivatives are heteroditopic non-symmetric molecular hosts that can form pseudorotaxane complexes with 4,4'-bipyridinium-type guests. Owing to the unique structural features and recognition properties of the calix[6]arene wheel, these systems are of interest for the design and synthesis of novel molecular devices and machines. We envisaged that the incorporation of photoactive units in the calixarene skeleton could lead to the development of systems whose working modes can be governed and monitored by means of light-activated processes. Here we report on the synthesis, structural characterization, and spectroscopic, photophysical and electrochemical investigation of two calix[6]arene wheels decorated with three naphthyl groups anchored to either the upper or lower rim of the phenylureido calixarene platform. We found that the naphthyl units interact mutually and with the calixarene skeleton in a different fashion in the two compounds, which thus exhibit a markedly distinct photophysical behavior. For both hosts, the inclusion of a 4,4'-bipyridinium guest activates energy- and/or electron-transfer processes that lead to non-trivial luminescence changes

    Millet Fermented by Different Combinations of Yeasts and Lactobacilli: Effects on Phenolic Composition, Starch, Mineral Content and Prebiotic Activity

    Get PDF
    Millet is the sixth-highest yielding grain in the world and a staple crop for millions of people. Fermentation was applied in this study to improve the nutritional properties of pearl millet. Three microorganism combinations were tested: Saccharomyces boulardii (FPM1), Saccharomyces cerevisiae plus Campanilactobacillus paralimentarius (FPM2) and Hanseniaspora uvarum plus Fructilactobacillus sanfranciscensis (FPM3). All the fermentation processes led to an increase in minerals. An increase was observed for calcium: 254 ppm in FPM1, 282 ppm in FPM2 and 156 ppm in the unfermented sample. Iron increased in FPM2 and FPM3 (approx. 100 ppm) with respect the unfermented sample (71 ppm). FPM2 and FPM3 resulted in richer total phenols (up to 2.74 mg/g) compared to the unfermented sample (2.24 mg/g). Depending on the microorganisms, it was possible to obtain different oligopeptides with a mass cut off <= 10 kDalton that was not detected in the unfermented sample. FPM2 showed the highest resistant starch content (9.83 g/100 g) and a prebiotic activity on Bifidobacterium breve B632, showing a significant growth at 48 h and 72 h compared to glucose (p < 0.05). Millet fermented with Saccharomyces cerevisiae plus Campanilactobacillus paralimentarius can be proposed as a new food with improved nutritional properties to increase the quality of the diet of people who already use millet as a staple food

    Combining excitation-emission matrix fluorescence spectroscopy, parallel factor analysis, cyclodextrin-modified micellar electrokinetic chromatography and partial least squares class-modelling for green tea characterization

    Get PDF
    In this study, an alternative analytical approach for analyzing and characterizing green tea (GT) samples is proposed, based on the combination of excitation–emission matrix (EEM) fluorescence spectroscopy and multivariate chemometric techniques. The three-dimensional spectra of 63 GT samples were recorded using a Perkin–Elmer LS55 luminescence spectrometer; emission spectra were recorded between 295 and 800 nm at excitation wavelength ranging from 200 to 290 nm, with excitation and emission slits both set at 10 nm. The excitation and emission profiles of two factors were obtained using Parallel Factor Analysis (PARAFAC) as a 3-way decomposition method. In this way, for the first time, the spectra of two main fluorophores in green teas have been found. Moreover, a cyclodextrin-modified micellar electrokinetic chromatography method was employed to quantify the most represented catechins and methylxanthines in a subset of 24 GT samples in order to obtain complementary information on the geographical origin of tea. The discrimination ability between the two types of tea has been shown by a Partial Least Squares Class-Modelling performed on the electrokinetic chromatography data, being the sensitivity and specificity of the class model built for the Japanese GT samples 98.70% and 98.68%, respectively. This comprehensive work demonstrates the capability of the combination of EEM fluorescence spectroscopy and PARAFAC model for characterizing, differentiating and analyzing GT samples

    Hydrologic controls on basin-scale distribution of benthic invertebrates

    Get PDF
    Streamflow variability is a major determinant of basin-scale distributions of benthic invertebrates. Here we present a novel procedure based on a probabilistic approach aiming at a spatially explicit quantitative assessment of benthic invertebrate abundance as derived from near-bed flow variability. Although the proposed approach neglects ecological determinants other than hydraulic ones, it is nevertheless relevant in view of its implications on the predictability of basin-scale patterns of organisms. In the present context, aquatic invertebrates are considered, given that they are widely employed as sensitive indicators of fluvial ecosystem health and human-induced perturbations. Moving from the analytical characterization of site-specific probability distribution functions of streamflow and bottom shear stress, we achieve a spatial extension to an entire stream network. Bottom shear stress distributions, coupled with habitat suitability curves derived from field studies, are used to produce maps of invertebrate suitability to shear stress conditions. Therefore, the proposed framework allows one to inspect the possible impacts on river ecology of human-induced perturbations of streamflow variability. We apply this framework to an Austrian river network for which rainfall and streamflow time series, river network hydraulic properties, and local information on invertebrate abundance for a limited number of sites are available. A comparison between observed species density versus modeled suitability to shear stress is also presented. Although the proposed strategy focuses on a single controlling factor and thus represents an ecological minimal model, it allows derivation of important implications for water resource management and fluvial ecosystem protection. Key Points Hydrologic variability is a major control of invertebrate habitat suitability New analytical basin-scale approach for pdfs of ecohydrological key features Austrian river basin used for ecohydrological data-model compariso

    Understanding Factors Associated With Psychomotor Subtypes of Delirium in Older Inpatients With Dementia

    Get PDF

    Scaling Laws for Weakly-nonlinear WDM Dispersion Managed OOK Systems

    No full text
    We show that kerr-induced nonlinear effects in long-haul dispersion mapped WDM systems follow general scaling laws that quickly allow both nding the best dispersion map and setting up accurate numerical simulations
    • …
    corecore