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A rotaxane with predetermined orientation of its
nonsymmetric components is obtained by a rim-selective
active template effect exerted by a calix[6]arene.
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Covalent Q1capture of oriented calix[6]arene
rotaxanes by a metal-free active template
approach†

Guido Orlandini, a Giulio Ragazzon,b Valeria Zanichelli, a Andrea Secchi, a

Serena Silvi,b Margherita Venturi,bc Arturo Arduini *a and Alberto Credi *cd

We describe the active template effect of a calix[6]arene host towards

the alkylation of a complexed pyridylpyridinium guest. The accelera-

tion of the reaction within the cavity is significant and rim-selective,

enabling the efficient preparation of rotaxanes with full control of the

mutual orientation of their nonsymmetric components.

Mechanically interlocked molecules (MIMs) such as rotaxanes,
catenanes and related species, initially developed as laboratory
curiosities, have been revealed to be appealing for a variety of
applications in materials science, information technology, nano-
science, catalysis and medicine.1,2 The growing interest in these
species is strictly related to the development of simple and efficient
synthetic methodologies that rely on template-directed effects.1a,3

Sauvage and co-workers pioneered the use of metal ions as
templates4 to entwine appropriately designed ligands in such a
way that the subsequent formation of covalent bonds leads to
mechanical interlocking of the molecular components.1a,3 In these
cases the metal ion has been referred to as a passive template,1a,5

because it provides the correct spatial arrangement of the precursors
but it does not play a role in the successive interlocking reaction.

More recently, Leigh and coworkers developed an active
metal template strategy5 in which the metal ion not only acts
as a template to preorganise the reactants but also promotes
the formation of the covalent bonds that lead to the final MIMs.
This procedure, which can be carried out by using either
stoichiometric or catalytic amounts of the template, has
enabled the efficient synthesis of rotaxanes and catenanes with
attractive structural and dynamic features.6 Although chemical

reactions can be kinetically affected within the cavity of a
macrocycle,1a,7 all active template syntheses of MIMs reported
to date involve the use of metals.

Here we describe a system in which a calix[6]arene-type host
exerts an active template effect in the formation of rotaxanes by both
keeping the precursor inside its cavity and accelerating the alkylation
reaction that forms the axle component. The process does not
require metals and is inherently stoichiometric, because the tem-
plate is a component of the final MIM and not an external species.

The present investigation stems from the ability of the p-rich
tris(N-phenylureido)calix[6]arene 1 (Scheme 1) to form inclu-
sion complexes with p-acceptors such as 1,10-dialkyl-4,4 0-
bipyridinium guests, which enabled us to prepare a variety of
rotaxanes and catenanes over the past decade.1b,8 In particular,
we have been able to exploit the different chemical nature of
the two rims of the calixarene to control the threading direction
of molecular axles9 and make oriented rotaxane isomers.10

Upon addition of calixarene 1 to a colorless suspension of the
pyridylpyridinium species 2+ in toluene at room temperature, the
mixture became rapidly homogeneous and orange coloured, sug-
gesting that a complex is formed. A 1H NMR analysis of the solution
revealed that 2+ is included into the cavity of 1, as witnessed by the
presence of four signals at very high fields (from 0 to 1 ppm),
consistent with the threading of the octadecyl chain of the guest
through the macrocycle.† The broadness of the NMR signals
suggests that the solution contains several species – namely, free
molecular components and two pseudorotaxane isomers P0[1*2]+

and P00[1*2]+ that differ for the relative orientation of their non-
symmetric components (Scheme 1). The apparent stability constant
of the 1 : 1 complex, determined by UV-visible titrations in toluene at
60 1C, is 8.1 � 104 M�1.†

In order to assess whether the reactivity of the pyridylpyr-
idinium guest is affected by complexation, 2+ was alkylated by
adding 20 equivalents of n-pentyl tosylate (3) in the presence of
one equivalent of 1 at 60 1C to afford the 1-pentyl-1 0-octadecyl-
4,40-bipyridinium species 42+ (Scheme 1).

The formation of 42+ inside the calixarene wheel (Scheme 1)
was confirmed by 1H NMR spectra, and observed as a function
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of time by monitoring the intensity of the charge-transfer absorp-
tion band at l = 470 nm, typical of pseudorotaxanes composed of 1
and bipyridinium guests (Fig. 1). The time-dependent absorption
data could be fitted according to a SN2 mechanism, yielding a rate
constant of 1.4 � 10�4 M�1 s�1 in toluene at 60 1C.

The reaction between 2+ and 3 was investigated in the absence
of the calixarene host under the same conditions of the previous
experiment. The formation of the product, however, could not be
monitored directly because 42+ is insoluble in toluene. Hence, we
set up distinct alkylation experiments which were stopped at
different times; in each of these experiments the amount of 42+

formed was evaluated by measuring the absorbance at 470 nm
upon addition of 1 to the reaction mixture. From the fitting of the
absorption data a second-order rate constant of 8.6� 10�6 M�1 s�1

was determined (Fig. 1). Thus, under the examined conditions
(toluene, 60 1C) the alkylation of 2+ is 16 times faster when the
calixarene is present.

The 1H NMR spectra of the reaction mixture in the presence
of 1 show that the pseudorotaxane isomer P0[1*4]2+ is obtained
preferentially (70%) over P00[1*4]2+ (30%) (Scheme 1). Interest-
ingly, the formation of P0[1*4]2+ is kinetically disfavoured with
respect to P00[1*4]2+ upon threading of pre-formed 42+ into 1 in
toluene. Indeed, only P00[1*4]2+ is afforded at room tempera-
ture, and a P0[1*4]2+/P00[1*4]2+ ratio of 30 : 70 is reached after
10 days under reflux.9

These observations, on the one hand, unequivocally prove that
the alkylation of 2+ in the presence of 1 occurs on guest molecules
accommodated inside the calixarene cavity. On the other hand, they
suggest that the reaction takes place preferentially on P0[1*2]+,
because it may be more populated and/or more reactive than
P00[1*2]+. In fact, we cannot exclude that P0[1*4]2+ is the sole
alkylation product and that subsequently, under the reaction con-
ditions, its components dethread and rethread to afford the kinetic
product of the threading process, that is, P00[1*4]2+.‡

To gain a deeper mechanistic understanding and enhance
the active template effect of 1 on the distribution of the
orientational isomers, we limited the scrambling of the wheel
and axle components by introducing a bulky substituent on the
alkyl extremity of the pyridylpyridinium guest. Thus, we per-
formed a new alkylation experiment using the stoppered axle 5+

(Scheme 2). As already observed for 2+, the complete solubilisa-
tion of the guest and the appearance of an orange colour upon
addition of 1 revealed the formation of a complex. The 1H NMR
spectra of the solution are consistent with the presence of the
two pseudorotaxane isomers, P0[1*5]+ and P00[1*5]+, and the
free molecular components (Scheme 2).

The detection of both orientational isomers when a stop-
pered axle is employed shows unequivocally that the pyridyl-
pyridinium guest can pierce the calixarene through either the
upper (urea-decorated) or the lower (alkoxy-decorated) rim.
This observation is in contrast to the behaviour of bipyridinium
axles, which in nonpolar solvents can enter the wheel only by
passing through the upper rim.11 Presumably, the role of
the urea moieties in driving the threading/dethreading of a
dicationic bipyridinium species through the upper rim is less
significant when the guest bears only one positive charge, as in
the case of 5+ (or 2+).

The complexity of the NMR spectra prevented us from
assessing the exact amount of the P0[1*5]+ and P00[1*5]+

isomers in solution. Therefore, we covalently captured the
corresponding oriented rotaxanes by alkylation and subsequent
stoppering. To this aim, the solution containing the pseudo-
rotaxanes was reacted with an excess of 12-hydroxy-n-dodecyl
tosylate (6) in refluxing toluene for 4 days (Scheme 2), enabling
the formation of the corresponding dicationic semirotaxanes.

The mixture was then directly treated with diphenylacetyl
chloride (7) at room temperature to obtain the two rotaxane
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Scheme 1

Fig. 1 Normalised absorption changes observed at 470 nm as a function
of time upon treating a 1 : 1 mixture of 1 and 2+ with 20 equivalents of 3
(empty circles). Solid circles show the absorption changes observed when
2+ alone is reacted with 3 and the product is detected through its
complexation with 1. The full lines are the fitting according to a second-
order rate law. Conditions: toluene, 60 1C, 1.6 mM 2+.
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isomers R0[1�8]2+ and R00[1�8]2+ (Scheme 2). Indeed, only
R0[1�8]2+ was isolated in 63% yield after chromatographic
separation; no trace of R00[1�8]2+ was found. The 1H NMR
spectrum of the product, interpreted with the aid of the spectra
of known symmetric rotaxanes bearing, respectively, C6 and
C12 alkyl chains linking the bipyridinium unit and the stop-
pers, unequivocally confirmed the arrangement of the axle 82+

with respect to the calixarene wheel in R0[1�8]2+.†
The fact that R0[1�8]2+ is the sole product indicates

unequivocally§ that under the conditions employed only
P0[1*5]+ undergoes an accelerated alkylation; that is, the active
template action of 1 takes place only when the pyridyl nitrogen is
oriented towards the upper rim of the calixarene. Such
an observation may be rationalized considering that (i) the pyridine
nitrogen is more exposed to the bulk when facing the upper rim,
(ii) the deep encapsulation of the pyridinium charge into the
electron rich cavity of 1 could result in an enhanced nucleophilicity
of the pyridyl nitrogen, and (iii) the proximity of the urea moieties
to the reaction site could stabilize the transition state by binding
the incipient, strongly coordinating tosylate anion.

In summary, we have shown that calixarene 1 plays the role
of an active template in the formation of (pseudo)rotaxanes by
accelerating the alkylation of a pyridylpyridinium substrate
inside the cavity of the host. At present, this is a unique
example of metal-free active template synthesis of MIMs. More-
over, the template effect takes place selectively at the upper rim
of the calixarene, thereby enabling the synthesis of rotaxanes

containing oriented components arranged in a predetermined
manner, in significantly higher yields and much shorter reaction
times with respect to sequential threading–capping procedures.10

We are interested in MIMs of this kind for the development of
novel molecular machines capable of stimuli-induced direction-
ally controlled movements.12 Experiments aimed at unravelling
the reaction mechanism are also underway in our laboratories.

This work was supported by Università di Bologna (FARB
SLaMM project) and Università di Parma (Centro Interdiparti-
mentale di Misure).
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‡ It cannot even be excluded that the P00[1*4]2+ results obtained from
the exo-cavity reaction of 2+ with 3 to yield 42+, which threads 1 from the
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§ If the alkylation occurred on free 5+, the resulting dicationic mono-
stoppered compound would thread 1 from the upper rim,11 affording
R00[1�8]2+. On the other hand, both the direct alkylation of P00[1*5]+ and
the isomerization of the dicationic semirotaxane resulting from the
alkylation of P0[1*5]+ have to be excluded, as they would also lead, after
the attachment of the second stopper, to the formation of R00[1�8]2+.
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