85 research outputs found

    Altered Na/Ca exchange distribution and activity in ventricular myocytes from failing hearts

    Get PDF
    In mammalian cardiac ventricular myocytes, Ca efflux via Na/Ca exchange (NCX) occurs predominantly at T tubules. Heart failure is associated with disrupted t-tubular structure, but its effect on t-tubular function is less clear. We therefore investigated t-tubular NCX activity in ventricular myocytes isolated from rat hearts ∼18 wk after coronary artery ligation (CAL) or corresponding sham operation (Sham). NCX current (I(NCX)) and l-type Ca current (I(Ca)) were recorded using the whole cell, voltage-clamp technique in intact and detubulated (DT) myocytes; intracellular free Ca concentration ([Ca](i)) was monitored simultaneously using fluo-4. I(NCX) was activated and measured during application of caffeine to release Ca from sarcoplasmic reticulum (SR). Whole cell I(NCX) was not significantly different in Sham and CAL myocytes and occurred predominantly in the T tubules in Sham myocytes. CAL was associated with redistribution of I(NCX) and I(Ca) away from the T tubules to the cell surface and an increase in t-tubular I(NCX)/I(Ca) density from 0.12 in Sham to 0.30 in CAL myocytes. The decrease in t-tubular I(NCX) in CAL myocytes was accompanied by an increase in the fraction of Ca sequestered by SR. However, SR Ca content was not significantly different in Sham, Sham DT, and CAL myocytes but was significantly increased by DT of CAL myocytes. In Sham myocytes, there was hysteresis between I(NCX) and [Ca](i), which was absent in DT Sham but present in CAL and DT CAL myocytes. These data suggest altered distribution of NCX in CAL myocytes

    Acidosis slows electrical conduction through the atrio-ventricular node

    Get PDF
    Acidosis affects the mechanical and electrical activity of mammalian hearts but comparatively little is known about its effects on the function of the atrio-ventricular node (AVN). In this study, the electrical activity of the epicardial surface of the left ventricle of isolated Langendorff-perfused rabbit hearts was examined using optical methods. Perfusion with hypercapnic Tyrode's solution (20% CO2, pH 6.7) increased the time of earliest activation (Tact) from 100.5 ± 7.9 to 166.1 ± 7.2 ms (n = 8) at a pacing cycle length (PCL) of 300 ms (37°C). Tact increased at shorter PCL, and the hypercapnic solution prolonged Tact further: at 150 ms PCL, Tact was prolonged from 131.0 ± 5.2 to 174.9 ± 16.3 ms. 2:1 AVN block was common at shorter cycle lengths. Atrial and ventricular conduction times were not significantly affected by the hypercapnic solution suggesting that the increased delay originated in the AVN. Isolated right atrial preparations were superfused with Tyrode's solutions at pH 7.4 (control), 6.8 and 6.3. Low pH prolonged the atrial-Hisian (AH) interval, the AVN effective and functional refractory periods and Wenckebach cycle length significantly. Complete AVN block occurred in 6 out of 9 preparations. Optical imaging of conduction at the AV junction revealed increased conduction delay in the region of the AVN, with less marked effects in atrial and ventricular tissue. Thus acidosis can dramatically prolong the AVN delay, and in combination with short cycle lengths, this can cause partial or complete AVN block and is therefore implicated in the development of brady-arrhythmias in conditions of local or systemic acidosis

    Effect of Ca 2+

    Get PDF
    We have used a previously published computer model of the rat cardiac ventricular myocyte to investigate the effect of changing the distribution of Ca2+ efflux pathways (SERCA, Na+/Ca2+ exchange, and sarcolemmal Ca2+ ATPase) between the dyad and bulk cytoplasm and the effect of adding exogenous Ca2+ buffers (BAPTA or EGTA), which are used experimentally to differentially buffer Ca2+ in the dyad and bulk cytoplasm, on cellular Ca2+ cycling. Increasing the dyadic fraction of a particular Ca2+ efflux pathway increases the amount of Ca2+ removed by that pathway, with corresponding changes in Ca2+ efflux from the bulk cytoplasm. The magnitude of these effects varies with the proportion of the total Ca2+ removed from the cytoplasm by that pathway. Differences in the response to EGTA and BAPTA, including changes in Ca2+-dependent inactivation of the L-type Ca2+ current, resulted from the buffers acting as slow and fast “shuttles,” respectively, removing Ca2+ from the dyadic space. The data suggest that complex changes in dyadic Ca2+ and cellular Ca2+ cycling occur as a result of changes in the location of Ca2+ removal pathways or the presence of exogenous Ca2+ buffers, although changing the distribution of Ca2+ efflux pathways has relatively small effects on the systolic Ca2+ transient

    Electrophysiological properties of myocytes isolated from the mouse atrioventricular node:L-type ICa, IKr, If, and Na-Ca exchange

    Get PDF
    The atrioventricular node (AVN) is a key component of the cardiac pacemaker-conduction system. This study investigated the electrophysiology of cells isolated from the AVN region of adult mouse hearts, and compared murine ionic current magnitude with that of cells from the more extensively studied rabbit AVN. Whole-cell patch-clamp recordings of ionic currents, and perforated-patch recordings of action potentials (APs), were made at 35–37°C. Hyperpolarizing voltage commands from −40 mV elicited a Ba(2+)-sensitive inward rectifier current that was small at diastolic potentials. Some cells (Type 1; 33.4 ± 2.2 pF; n = 19) lacked the pacemaker current, I(f), whilst others (Type 2; 34.2 ± 1.5 pF; n = 21) exhibited a clear I(f), which was larger than in rabbit AVN cells. On depolarization from −40 mV L-type Ca(2+) current, I(C)(a,L), was elicited with a half maximal activation voltage (V(0.5)) of −7.6 ± 1.2 mV (n = 24). I(C)(a,L) density was smaller than in rabbit AVN cells. Rapid delayed rectifier (I(K)(r)) tail currents sensitive to E-4031 (5 μmol/L) were observed on repolarization to −40 mV, with an activation V(0.5) of −10.7 ± 4.7 mV (n = 8). The I(K)(r) magnitude was similar in mouse and rabbit AVN. Under Na-Ca exchange selective conditions, mouse AVN cells exhibited 5 mmol/L Ni-sensitive exchange current that was inwardly directed negative to the holding potential (−40 mV). Spontaneous APs (5.2 ± 0.5 sec(−1); n = 6) exhibited an upstroke velocity of 37.7 ± 16.2 V/s and ceased following inhibition of sarcoplasmic reticulum Ca(2+) release by 1 μmol/L ryanodine, implicating intracellular Ca(2+) cycling in murine AVN cell electrogenesis

    Cellular Hypertrophy and Increased Susceptibility to Spontaneous Calcium-Release of Rat Left Atrial Myocytes Due to Elevated Afterload

    Get PDF
    Atrial remodeling due to elevated arterial pressure predisposes the heart to atrial fibrillation (AF). Although abnormal sarcoplasmic reticulum (SR) function has been associated with AF, there is little information on the effects of elevated afterload on atrial Ca2+-handling. We investigated the effects of ascending aortic banding (AoB) on Ca2+-handling in rat isolated atrial myocytes in comparison to age-matched sham-operated animals (Sham). Myocytes were either labelled for ryanodine receptor (RyR) or loaded with fluo-3-AM and imaged by confocal microscopy. AoB myocytes were hypertrophied in comparison to Sham controls (P<0.0001). RyR labeling was localized to the z-lines and to the cell edge. There were no differences between AoB and Sham in the intensity or pattern of RyR-staining. In both AoB and Sham, electrical stimulation evoked robust SR Ca2+-release at the cell edge whereas Ca2+ transients at the cell center were much smaller. Western blotting showed a decreased L-type Ca channel expression but no significant changes in RyR or RyR phosphorylation or in expression of Na+/Ca2+ exchanger, SR Ca2+ ATPase or phospholamban. Mathematical modeling indicated that [Ca2+]i transients at the cell center were accounted for by simple centripetal diffusion of Ca2+ released at the cell edge. In contrast, caffeine (10 mM) induced Ca2+ release was uniform across the cell. The caffeine-induced transient was smaller in AoB than in Sham, suggesting a reduced SR Ca2+-load in hypertrophied cells. There were no significant differences between AoB and Sham cells in the rate of Ca2+ extrusion during recovery of electrically-stimulated or caffeine-induced transients. The incidence and frequency of spontaneous Ca2+-transients following rapid-pacing (4 Hz) was greater in AoB than in Sham myocytes. In conclusion, elevated afterload causes cellular hypertrophy and remodeling of atrial SR Ca2+-release

    Sarcolemmal distribution of ICa and INCX and Ca autoregulation in mouse ventricular myocytes

    Get PDF
    The balance of Ca2+ influx and efflux regulates the Ca2+ load of cardiac myocytes, a process known as autoregulation. Previous work has shown that Ca2+ influx, via L-type Ca2+ current ( ICa), and efflux, via the Na+/Ca2+ exchanger (NCX), occur predominantly at t-tubules; however, the role of t-tubules in autoregulation is unknown. Therefore, we investigated the sarcolemmal distribution of ICa and NCX current ( INCX), and autoregulation, in mouse ventricular myocytes using whole cell voltage-clamp and simultaneous Ca2+ measurements in intact and detubulated (DT) cells. In contrast to the rat, INCX was located predominantly at the surface membrane, and the hysteresis between INCX and Ca2+ observed in intact myocytes was preserved after detubulation. Immunostaining showed both NCX and ryanodine receptors (RyRs) at the t-tubules and surface membrane, consistent with colocalization of NCX and RyRs at both sites. Unlike INCX, ICa was found predominantly in the t-tubules. Recovery of the Ca2+ transient amplitude to steady state (autoregulation) after application of 200 µM or 10 mM caffeine was slower in DT cells than in intact cells. However, during application of 200 µM caffeine to increase sarcoplasmic reticulum (SR) Ca2+ release, DT and intact cells recovered at the same rate. It appears likely that this asymmetric response to changes in SR Ca2+ release is a consequence of the distribution of ICa, which is reduced in DT cells and is required to refill the SR after depletion, and NCX, which is little affected by detubulation, remaining available to remove Ca2+ when SR Ca2+ release is increased. NEW &amp; NOTEWORTHY This study shows that in contrast to the rat, mouse ventricular Na+/Ca2+ exchange current density is lower in the t-tubules than in the surface sarcolemma and Ca2+ current is predominantly located in the t-tubules. As a consequence, the t-tubules play a role in recovery (autoregulation) from reduced, but not increased, sarcoplasmic reticulum Ca2+ release. </jats:p

    The Eldgjá eruption: timing, long-range impacts and influence on the Christianisation of Iceland.

    Get PDF
    The Eldgjá lava flood is considered Iceland's largest volcanic eruption of the Common Era. While it is well established that it occurred after the Settlement of Iceland (circa 874 CE), the date of this great event has remained uncertain. This has hampered investigation of the eruption's impacts, if any, on climate and society. Here, we use high-temporal resolution glaciochemical records from Greenland to show that the eruption began in spring 939 CE and continued, at least episodically, until at least autumn 940 CE. Contemporary chronicles identify the spread of a remarkable haze in 939 CE, and tree ring-based reconstructions reveal pronounced northern hemisphere summer cooling in 940 CE, consistent with the eruption's high yield of sulphur to the atmosphere. Consecutive severe winters and privations may also be associated with climatic effects of the volcanic aerosol veil. Iceland's formal conversion to Christianity dates to 999/1000 CE, within two generations or so of the Eldgjá eruption. The end of the pagan pantheon is foretold in Iceland's renowned medieval poem, Vǫluspá ('the prophecy of the seeress'). Several lines of the poem describe dramatic eruptive activity and attendant meteorological effects in an allusion to the fiery terminus of the pagan gods. We suggest that they draw on first-hand experiences of the Eldgjá eruption and that this retrospection of harrowing volcanic events in the poem was intentional, with the purpose of stimulating Iceland's Christianisation over the latter half of the tenth century

    Reduced density and altered regulation of rat atrial L-type Ca<sup>2+</sup> current in heart failure

    Get PDF
    Constitutive regulation by PKA has recently been shown to contribute to L-type Ca2+current ( ICaL) at the ventricular t-tubule in heart failure. Conversely, reduction in constitutive regulation by PKA has been proposed to underlie the downregulation of atrial ICaLin heart failure. The hypothesis that downregulation of atrial ICaLin heart failure involves reduced channel phosphorylation was examined. Anesthetized adult male Wistar rats underwent surgical coronary artery ligation (CAL, N=10) or equivalent sham-operation (Sham, N=12). Left atrial myocytes were isolated ~18 wk postsurgery and whole cell currents recorded (holding potential=-80 mV). ICaLactivated by depolarizing pulses to voltages from -40 to +50 mV were normalized to cell capacitance and current density-voltage relations plotted. CAL cell capacitances were ~1.67-fold greater than Sham ( P ≤ 0.0001). Maximal ICaLconductance ( Gmax) was downregulated more than 2-fold in CAL vs. Sham myocytes ( P &lt; 0.0001). Norepinephrine (1 μmol/l) increased Gmax&gt;50% more effectively in CAL than in Sham so that differences in ICaLdensity were abolished. Differences between CAL and Sham Gmaxwere not abolished by calyculin A (100 nmol/l), suggesting that increased protein dephosphorylation did not account for ICaLdownregulation. Treatment with either H-89 (10 μmol/l) or AIP (5 μmol/l) had no effect on basal currents in Sham or CAL myocytes, indicating that, in contrast to ventricular myocytes, neither PKA nor CaMKII regulated basal ICaL. Expression of the L-type α1C-subunit, protein phosphatases 1 and 2A, and inhibitor-1 proteins was unchanged. In conclusion, reduction in PKA-dependent regulation did not contribute to downregulation of atrial ICaLin heart failure.NEW &amp; NOTEWORTHY Whole cell recording of L-type Ca2+currents in atrial myocytes from rat hearts subjected to coronary artery ligation compared with those from sham-operated controls reveals marked reduction in current density in heart failure without change in channel subunit expression and associated with altered phosphorylation independent of protein kinase A.</jats:p
    corecore