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Abstract
Atrial remodeling due to elevated arterial pressure predisposes the heart to atrial fibrillation

(AF). Although abnormal sarcoplasmic reticulum (SR) function has been associated with

AF, there is little information on the effects of elevated afterload on atrial Ca2+-handling. We

investigated the effects of ascending aortic banding (AoB) on Ca2+-handling in rat isolated

atrial myocytes in comparison to age-matched sham-operated animals (Sham). Myocytes

were either labelled for ryanodine receptor (RyR) or loaded with fluo-3-AM and imaged by

confocal microscopy. AoB myocytes were hypertrophied in comparison to Sham controls

(P<0.0001). RyR labeling was localized to the z-lines and to the cell edge. There were no

differences between AoB and Sham in the intensity or pattern of RyR-staining. In both AoB

and Sham, electrical stimulation evoked robust SR Ca2+-release at the cell edge whereas

Ca2+ transients at the cell center were much smaller. Western blotting showed a decreased

L-type Ca channel expression but no significant changes in RyR or RyR phosphorylation or

in expression of Na+/Ca2+ exchanger, SR Ca2+ ATPase or phospholamban. Mathematical

modeling indicated that [Ca2+]i transients at the cell center were accounted for by simple

centripetal diffusion of Ca2+ released at the cell edge. In contrast, caffeine (10 mM) induced

Ca2+ release was uniform across the cell. The caffeine-induced transient was smaller in

AoB than in Sham, suggesting a reduced SR Ca2+-load in hypertrophied cells. There were

no significant differences between AoB and Sham cells in the rate of Ca2+ extrusion during

recovery of electrically-stimulated or caffeine-induced transients. The incidence and fre-

quency of spontaneous Ca2+-transients following rapid-pacing (4 Hz) was greater in AoB

than in Shammyocytes. In conclusion, elevated afterload causes cellular hypertrophy and

remodeling of atrial SR Ca2+-release.
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Introduction
Atrial fibrillation (AF) is the most common sustained arrhythmia, represents a major risk fac-
tor for stroke and is associated with high morbidity and mortality[1]. The most prevalent risk
factor for the development of AF is hypertension[1, 2]. Animal models have shown that hyper-
tension and elevated afterload cause structural and cellular remodeling of the atria that estab-
lishes a substrate for re-entrant arrhythmias[3–7]. However, the trigger mechanism(s)
initiating AF are less clear[1] although abnormalities in Ca2+ handling are likely to play an
important role[8–11]. In addition, tachyarrhythmia-induced electrical remodeling in the form
of reduced atrial effective refractory period (AERP)[12], linked to reduced L-type Ca2+ channel
(LTCC) current (ICaL) density and increased inward-rectifier K

+ currents[13–15] contribute to
the stabilization of the arrhythmia.

Atrial myocytes from AF patients show abnormal sarcoplasmic reticulum (SR) Ca2+ han-
dling and an increased rate of spontaneous diastolic Ca2+ release compared with myocytes
from patients in sinus rhythm[9–11]. Spontaneous diastolic release of SR Ca2+ can cause
delayed afterdepolarizations (DADs), which constitute a major mechanism underlying focal
triggered activity[8]. Thus, the AF-associated remodeling of Ca2+ handling is consistent with
an increased susceptibility to triggered activity in atria from AF patients[8, 12]. Atrial myocytes
from AF patients show complex and variable patterns of intracellular Ca2+ transport[8], but
the extent to which this is altered in afterload-induced remodeling prior to the development of
AF is unknown. Propagating Ca2+-induced Ca2+ release, which is known to be arrhythmogenic
in ventricular myocytes[16], depends on the microscopic cellular architecture[17, 18] and
might be altered during hypertension-induced cellular remodeling. We have examined this
possibility by analyzing cell geometry, ryanodine receptor labeling and the spread of Ca2+ sig-
nals across cells from sham-operated and elevated afterload (aortic-banded) animals[4].

Materials and Methods
All procedures were conducted in accordance with the Animals (Scientific Procedures) Act
1986 of the United Kingdom and were approved by the Research Ethics Committee of the Uni-
versity of Bristol. Surgical procedures were conducted under general anaesthesia (80 mg/kg
ketamine and 8 mg/kg xylazine).

Animal model with elevated afterload
A gradual increase in left ventricular afterload was achieved by partial stenosis of the ascending
aorta in weanling rats, as described previously[4]. Briefly, 32 male Wistar rats (B&K Universal
Ltd, UK), body weight 100–120 g (3–4 weeks of age), were subject to general anesthesia
(80 mg/kg ketamine and 8 mg/kg xylazine), intubated and ventilated and a right thoracotomy
performed. In 16 of these (AoB), a silk ligature (3–0) was tied around the ascending aorta to
the outer diameter of a blunt 20-gauge needle (0.91 mm). The remaining 16 time-matched
sham-operated controls (Sham) were subject to the same procedure except that a suture was
not tied around the aorta. Experiments were conducted 20±1 weeks post-surgery.

Cell isolation and storage
Left atrial myocytes were isolated from AoB and Sham hearts by Langendorff perfusion of the
heart with a collagenase-containing solution and stored in Kraftbrühe (KB) solution at ~4°C
until use, as described previously[3]. Cells were stored in Kraftbrühe (KB) solution containing
(in mM), 70 L-glutamic acid, 30 KCl, 10 HEPES, 1 EGTA, 5 MgCl2, 5 Na-pyruvate, 20 taurine,
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10 D-glucose, 5 succinic acid, 5 creatine, 2 Na2ATP, and 5 β-hydroxybutyric acid (pH 7.2) in a
refrigerator (~4°C)[19].

Confocal microscopy
Images were obtained from live and fixed cells using a laser scanning confocal microscope
(LSM 510, Zeiss, Germany). The confocal aperture was set so that the confocal plane was
�1 μm with a ×63 oil-immersion objective lens (Plan-Neofluar, numerical aperture 1.2, Zeiss,
Germany).

Cell labeling
To visualize the cell membrane, left atrial myocytes were stained with 5 μMdi-8-ANEPPS (Invi-
trogen, UK) at room temperature (RT) for 5 minutes. After removal of unloaded dye by centrifu-
gation (400 rpm, 40 s) and re-suspension in dye-free Tyrode’s solution, di-8-ANEPPS-loaded
cells were transferred to a bath mounted on the LSM 510 (Zeiss, Germany). To examine the
expression and localization of ryanodine receptors (RyR), myocytes were allowed to settle on
poly-l-lysine coverslips for 1 h. Cells were fixed in 4% paraformaldehyde (PFA) for 10 min and
subsequently permeabilized using 0.1% Triton-X for 10 min at RT. Fixed and permeabilized cells
were incubated with 5 μg/ml of RyR antibody (Pierce Antibodies, MA3-916) for 1 h followed by
incubation with 2 μg/ml Alexa Fluor 488-conjugated anti-mouse secondary antibody (Molecular
Probes, A21121) for 1 h. Images were analyzed using ImageJ (NIH) and using routines written in
IDL (Boulder, CO). The periodicity of the staining was investigated by obtaining the fluorescence
profile along the longitudinal axis of the cell. The power spectrum of the fluorescence profile was
calculated using the fast Fourier transform (FFT) and a Gaussian function was fitted to the first
harmonic (IgorPro 3.16B, Wavemetrics Inc., OR). The spatial frequency corresponding to the
peak of the power spectrum gave a measure of the periodic interval and the amplitude of the
peak normalized as a percentage of the frequency-independent component of the spectrum pro-
vided a measure of the intensity of staining associated with the striations[20].

Western blotting
10 μg samples of tissue homogenates were run on 6% reducing SDS-PAGE gels and transferred
onto Immobilon-P membrane. Blots were probed with anti-ryanodine receptor 2 (anti-RyR2;
MA3916, Thermo Scientific, UK), S2808-specific anti-phospho-RyR2 (2808 AP, Badrilla, UK),
S2814-specific anti-phospho-RyR2 (A010-31AP, Badrilla, UK), anti-α1c LTCC subunit (ACC-
003; Alomone, Israel), anti-SR Ca2+ ATPase (anti-SERCA2; MA3-919, Thermo Scientific, UK),
anti-phospholamban (anti-PLB; A010-14, Badrilla, UK), S16-specific anti-phosphorylated PLB
(A010-12AP, Badrilla, UK), anti-Na+/Ca2+ exchanger (anti-NCX1; R3F1, Swannt, Switzerland)
or anti-GAPDH (G9545; Sigma, UK) and protein bands visualized using relevant peroxidase-
conjugated secondary antibodies, chemiluminescence and autoradiography. The S2808- and
S2814-specific anti-phospho-RyR2 antibodies were used to investigate changes in RyR2 phos-
phorylation because phosphorylation at these sites for protein kinase A (PKA) and Ca2+-cal-
modulin-dependent protein kinase II (CaMKII) has been reported to be altered in atrial
fibrillation and heart failure[10, 11, 21–26]. Band density was measured using ImageJ (http://
imagej.nih.gov/ij/) and normalized to GAPDH.

Ca2+ imaging
Atrial myocytes were re-suspended in a Tyrode’s solution containing 0.75 mM Ca2+ and loaded
with 10 μM fluo 3-AM for 6 min at 37°C. Fluo-3-AM-loaded cells were resuspended in control
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Tyrode’s solution containing (in mM) 134 NaCl, 4 KCl, 1.2 MgCl2, 1.0 CaCl2, 11 D-glucose, 10
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES; pH 7.4) and, after 30 minutes
de-esterification, transferred to a bath mounted on the stage of the LSM (Zeiss, Germany). The
cells were superfused with control solution and stimulated at 0.2–1 Hz by 4-ms bi-polar supra-
threshold rectangular voltage pulses via a pair platinum electrodes. Experiments were per-
formed at room temperature. Fluo-3 was excited at 488 nm and emitted fluorescence collected
at wavelengths>505 nm. SR function was examined by rapid application of the RyR agonist,
caffeine (10 mM). Image analysis was performed off-line using Zeiss LSM 5 Image Examiner
Software V2.81 (Zeiss, Germany) and custom routines in IDL (Boulder, CO). Linescan images
of electrically-stimulated ‘twitch’ transients are presented as the average of>15 consecutive
transients. Fluorescence was normalized to the baseline signal (F/F0). Where indicated, the
intracellular Ca2+ concentration ([Ca2+]i) was calculated using the equation:

½Ca2þ�i ¼
 
Kd:

F
F0

� �!
=

Kd

½Ca2þ�rest
� F
F0

þ 1

� �
; Eq 1

assuming a dissociation constant of fluo-3 for Ca2+ (Kd) of 400 nM and [Ca2+]rest = 100 nM
[27], where F represents fluorescence intensity and F0 represents the baseline F. This value for
Kd was chosen to allow direct comparison of the data with a previous study of Ca2+ transport
in rat atrial cells[28]. Ca2+ extrusion from the cytosol during the recovery of twitch and caf-
feine-induced transients were quantified by fitting the decaying phase of the transient with the
equation:

½Ca2þ�iðtÞ ¼ A:e�k:t þ c; Eq 2

where t represents time, k the rate constant, A a constant representing the notional peak of the
transient at t = 0 and c the resting level.

Modeling of diffusion
To examine the gradients of Ca2+ that would result from diffusive processes in cells a computer
model was used to solve the general reaction-diffusion equation:

dX
dt

¼ �Dx:r2X �PBJX þ JS; Eq 3

where DX is the diffusion coefficient for diffusible species X, JX the reactive flux for all buffers B
and JS the source (and sinks) of Ca

2+. Consideration of the elliptical cross-section of a cylindri-
cal cell (see Fig 1A) suggested that the Laplacian should be solved in a two dimensional orthog-
onal elliptic coordinate system where symmetry allowed only one quadrant to be solved:

r2X ¼ 1

a2ðcosh2ðmÞ � cos2ðnÞÞ
@2X
@m2

þ @2X
@n2

� �
; v 2 0;

p
2

h i
Eq 4

related to Cartesian cell x,y coordinates by:

x ¼ a coshðmÞ þ cosðnÞ; y ¼ a sinhðmÞ þ sinðnÞ Eq 5

The resulting discretization of the problem is shown in the corresponding figure. The base
model major and minor axes were 10.3 and 7.6 μm respectively. Reactive fluxes were described
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by buffering equation:

JB ¼ kon½Ca�½Bg � koff ½CaB� Eq 6

ATP and fluo-3 were treated as mobile buffers and troponin as a fixed buffer (for constants
see Table 1).

Ca uptake by the SR Ca2+ pump could be distributed across the cell volume:

JSERCA ¼ Kmax

Vmax

1þ Km=½Ca2þ�ð Þ2
 !

� Jleak Eq 7

with Km based on vesicle uptake experiments (1 μM[31]). An analogous equation was used to
describe sarcolemmal Ca2+ extrusion with Vmax being set to fit the observed time course of
decline of the fluo-3 signal after a caffeine pulse. In the absence of an active SR pump the rate
of Ca extrusion had to be increased by a factor of 170. Jleak is a constant to set net transport to
zero for a resting [Ca2+] of 100 nM. Interpretation of local Ca2+ signals is further complicated
by blurring due to the microscope point spread function, and this was simulated by convolving
the model fluo-3 signal by 2D Gaussian function with full width at half maximum of 0.3 μm in

Fig 1. Left atrial myocyte hypertrophy. (A) left hand panel; total projected density of a series of x-y laser scanning images at various depths within an AoB
left atrial myocyte stained with di-8-ANEPPS. Right hand panel; y-z section through the cell. Scale bar represents 20 μm. B–G respectively, cell volume (B),
cell surface area (C), volume:surface area ratio (D), cell width (E), cell depth (F) and cell width:depth ratio of left atrial myocytes from Sham (open circles,
n/N = 20/3) and AoB (filled circles, n/N = 13/3). Horizontal lines represent mean ± SEM. ###, P<0.0001, Student’s unpaired t-test.

doi:10.1371/journal.pone.0144309.g001
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x,y and 1.0 μm in z, as estimated from images of fluorescent beads and in cells[29]. Calcium
signals at the edge of the cells were produced by release basis function whose parameters were
varied to fit experimental time courses:

Js;t ¼ Rmaxðexpð�koff tÞð1� expð�kontÞÞ Eq 8

By solving the model reaction-diffusion equations and fitting results to experimental data,
the requirement to deconvolve the fluorescent signals before trying to solve the inverse prob-
lem posed by the system of equations was overcome [29]. It should be noted that inverse solu-
tions for the present problem would be (essentially) impossible due to experimental noise.
Using this model we examined the spatio-temporal properties of Ca2+ transport across the cell
to see whether Ca2+ signals in the center of the cell could be explained by purely passive diffu-
sion or whether they required regenerative Ca2+ release.

Statistics
Data are expressed as mean ± standard error of the mean (SEM). Data sets were subject to
D’Agostino and Pearson omnibus normality test. Statistical analyses applied are indicated in
the figure legends. Sample sizes are reported as n/N, where n = number of cells and N = the
number of hearts. P<0.05 was considered statistically significant.

Results
Staining of the sarcolemma of isolated left atrial (LA) myocytes from both Sham and AoB rats
with the lipophilic dye, di-8-ANEPPS, was located exclusively to the cell edge, consistent with a
sparsity of t-tubules in these cells[32]. From confocal volume images the cell volume (Fig 1B),
surface area (Fig 1C), volume/area ratio (Fig 1D), width (Fig 1E), depth (Fig 1F) and width/
depth ratio (Fig 1G) were calculated. These data show that LA myocytes from AoB rats devel-
oped marked hypertrophy in comparison with cells from Sham controls.

The expression and phosphorylation of major proteins involved in Ca2+ transport was
investigated by Western blotting of LA tissue homogenates from Sham and AoB rats (Fig 2).
There were no significant differences between Sham and AoB in the expression of RyR2,
SERCA, PLB or NCX1 (Fig 2B). On the other hand, expression of the α1c subunit of LTCC was
significantly reduced in AoB left atria as compared with Sham. There was no difference in the
phosphorylation of RyR2 at the PKA/CaMKII sites, serine 2808 and serine 2814 or in the phos-
phorylation of PLB at serine 16.

Table 1. Model diffusion and buffering constants.

Species Concentration (μM) Diffusion coefficient (10−10 m2/s) kon (μMs-1) koff (s-1)

Ca2+ 0.1 3.0

ATP(Ca) 0.2a 1.0 13.7 b 3.0x104

Mg2+ 1000 0a 100 31

ATP(Mg) 495a 1.0 3.3x10-4 3

Fluo-3 100 0.7 48.8 43.9

Troponin C 100 0 200 200

Table gives constants for the model which are based on previous cardiac simulation studies[29, 30] with minor adjustments in buffering parameters

improve the fit to experimental data.
a The total ATP concentration was 5 mM, which was distributed among free, Ca2+ bound and Mg2+ bound forms according to equilibrium conditions.
b Diffusion of Mg2+ was ignored as tests showed that negligible gradients in Mg2+ developed.

doi:10.1371/journal.pone.0144309.t001
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Ryanodine receptor (RyR) labeling showed a clear striated pattern (Fig 3), as previously
reported[17, 18, 33, 34]. However, there was no significant difference between Sham and AoB
myocytes in the periodicity of staining of RyR2 at the sarcomeres (Sham: 0.550±0.005 μm-1,
n = 18; AoB: 0.552±0.004 μm-1, n = 18; P = 0.71) or in the regularity of the staining associated
with the striations (Sham: 6.0±0.8%; AoB: 4.7±0.6%; P = 0.19) as quantified by, respectively,
the position and height of the peak from the Fourier transform. Western blot analysis con-
firmed no difference in RyR protein expression between Sham and AoB atria (Fig 2). The
banded structure of the RyR labeling was consistent with the expression of RyR in corbular sar-
coplasmic reticulum (SR) at the z-lines[17, 18, 33, 34]. RyR staining could be observed between
the striations at the cell periphery in both Sham and AoB cells (white arrows in Fig 3A & 3B),
consistent with the existence of RyR in junctional SR in close juxtaposition to the sarcolemma
[17, 18, 33, 34]. Nevertheless, it is clear that the majority of RyR were not coupled to the sarco-
lemma. In summary, these data demonstrate that although left atrial myocytes from AoB rats
had undergone significant afterload-induced hypertrophy, no remodeling of RyR expression or
localization was evident.

Electrical stimulation of fluo-3-loaded cells elicited Ca2+-transients that were initiated at the
periphery of the cells (Fig 4). Ca2+-transients at the edge of the cell were robust and rapidly
reached a peak which was not different between the groups (F/F0: Sham = 2.34±0.21, n = 12;
AoB = 2.27±0.20, n = 8; P = 0.99). In contrast to the cell edge, transients at the center of the

Fig 2. Left atrial expression of Ca2+ handling proteins. (A) Original Western blots of Ca2+ handling
proteins from Sham and AoB LA. Note the GAPDH blots for normalization. (B) Mean band intensity
expressed relative to Sham as 100%. Data represent mean ± SEM from 6 Sham and 6 AoB hearts.
*, P<0.05, Student’s unpaired t-test. (C) Original Western blots of phosphorylated RyR and PLB from Sham
and AoB. Data correspond to the samples shown in (A). (D) Mean band intensity expressed relative to Sham
as 100%. Data represent mean ± SEM from 6 Sham and 6 AoB hearts.

doi:10.1371/journal.pone.0144309.g002
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cells had a much smaller amplitude (F/F0: Sham = 1.22±0.04, P<0.0001; AoB = 1.28±0.09,
P<0.0001) and were often barely detectable (e.g. Fig 4Ai & 4Bi). The delay to the center in
these cells was Sham, 39.7±6.1 ms (n = 10), and AoB, 50.4±21.4 ms, (n = 5; P = 0.54). Thus, the
cells generally showed a ‘U’-shaped profile of Ca2+ changes across the width of the cell[35].
However, in a minority of cells (Sham 2/12; AoB 3/8; P = 0.35), significant transients could be
observed at the cell center (e.g. Fig 4Aii & 4Bii). This variable pattern of release has previously
been noted[36]. In summary, there were no significant differences between Sham and AoB
myocytes in the amplitude of Ca2+ transients at the cell edge or at the cell center, nor was there
any significant difference in the delay of the peak at the center of the cell relative to the cell
edge.

The small amplitude of the Ca2+ transient at the cell center clearly suggests that in the
majority of cells there was little, if any, regenerative propagation of Ca2+ release to the center.
On the other hand, the short delay between the transient at the edge and center of the cell
might be consistent with the propagation of a Ca2+ wave involving calcium-induced calcium
release[37, 38]. These divergent possibilities led us to calculate the spatio-temporal time course
of simple diffusion across an elliptical cell driven by a peripheral Ca2+ transient (see Methods
and Fig 5A). A transient increase in [Ca2+]i to ~1 μM at the cell edge resulted in centripetal dif-
fusion of Ca2+ and a significant Ca2+ transient occurred at the cell center (Fig 5B). However,
the delay to the peak at the cell center relative to the peak of release at the cell edge (~100 ms)
was considerably greater than that observed experimentally (cf. Fig 4). In addition, the ampli-
tude of the transient at the cell center was greater than observed in the majority of cells. This
difference between the model and experimental data could be explained by SR Ca2+ uptake
across the cell, which, when added to the model equations, limited the effective spread of the
transient to the cell center (Fig 5Ci) and reduced the time to peak and increased the rate of
decline of the central Ca2+ transient. Adding simulated microscope blurring (measured from

Fig 3. Ryanodine receptor location. (A) representative image from a Sham left atrial myocyte. Lower image, higher magnification view of area indicated by
dotted box. Arrows indicate intra-sarcomeric RyR at the cell periphery. (B) power spectrum of longitudinal scan along the cell. (C) representative image from
an AoB left atrial myocyte. Lower image, higher magnification view of area indicated by dotted box. (D) power spectrum of longitudinal scan along the cell.
Scale bars represent 5 μm. (E) sarcomere length. Data from 18/3 Sham cells/hearts and 18/3 AoB cells/hearts.

doi:10.1371/journal.pone.0144309.g003
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fluorescent beads[29]) increased the apparent speed of propagation from the cell edge to center
and resulted in model data being a reasonable facsimile of experimental data (compare Fig 5D
and 5E with Fig 4). Thus, the data from most cells are consistent with the idea that Ca2+ release
occurs predominately in cell periphery via junctional RyRs with little, if any, regenerative Ca2+

release from the uncoupled RyRs residing in corbular SR within the cell interior.
SR function was examined further using the RyR agonist, caffeine (Fig 6). Caffeine (10 mM)

was applied 10 s after 8 conditioning pulses at 1 Hz. The application of caffeine produced a large
homogeneous release of Ca2+ (Fig 6A), showing that the interior SR stored releasable Ca2+. After
the peak of release, F/F0 declined in the continued presence of caffeine, although more slowly
than for twitch transients following electrical stimulation (Fig 6B). Following washout of caffeine,
the amplitude of the Ca2+ transient was reduced, consistent with the loss of releasable Ca2+ from
the junctional SR and with subsequent pulses Ca2+ release progressively increased in amplitude
until a steady state was reached, typically after ~20 pulses. The amplitude of the caffeine-induced
transient, an index of the Ca2+ content of the SR, was significantly smaller in AoB than in Sham
myocytes (Fig 6C). This is consistent with a reduced expression of LTCC (and possibly SERCA)
(Fig 2B) and a consequent decrease in Ca2+ influx and Ca2+ store uptake leading to reduced
stored Ca2+. On the other hand, there was no notable difference between Sham and AoB myo-
cytes in the recovery of Ca2+ transient amplitude following the washout of caffeine, suggesting
that cytosolic Ca buffering was not increased in AoB myocytes

The contribution of different Ca2+ transporters to the extrusion of Ca2+ from the cytosol
was examined by examining the rates of recovery of Ca2+ transients stimulated either

Fig 4. Left atrial myocyte Ca2+ transients in pressure-overload. (A) Upper panels: representative averaged line-scan images taken transversely across
left atrial myocytes from Sham-operated rats. Middle panels: corresponding changes in [Ca2+]i on the same time scale as the line-scan images. Black trace
represents the signal at the edge of the cell, gray trace represents the signal in the center of the cell. Lower panels: transverse profile across the cell at the
peak of the Ca2+ transient. (B) Upper panels: representative averaged line-scan images taken transversely across left atrial myocytes from AoB rats. Middle
panels: corresponding changes in [Ca2+]i on the same time scale as the line-scan images. Black trace represents the signal at the edge of the cell, gray trace
represents the signal in the center of the cell. Lower panels: transverse profile across the cell at the peak of the Ca2+ transient. Cells were stimulated at 1 Hz.

doi:10.1371/journal.pone.0144309.g004
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electrically or by caffeine (Fig 7)[39, 40]. The rate of decline of electrically stimulated Ca2+ tran-
sients reflects extrusion via all pathways (i.e. the SR Ca2+ ATPase, NCX and sarcolemmal Ca2+

pump (SLCA)) (Fig 7A). In the presence of caffeine, the rate of recovery of the Ca2+ transient
reflects sarcolemmal Ca2+ extrusion as the SR cannot accumulate Ca2+ (Fig 7B). In comparison
with the electrically stimulated transient, the rate of decline of the Ca2+ transient in caffeine
was reduced by about an order of magnitude and addition of 10 mM Ni2+ (to block NCX) fur-
ther decreased the rate of decline of Ca2+ (Fig 7B) by a factor of ~3. There were no significant
differences between Sham and AoB myocytes in the rate constants of Ca2+ extrusion during
either twitch or caffeine-induced transients (Fig 7C) or in the presence of Ni2+ (Fig 7C), consis-
tent with the absence of changes in expression of SERCA and NCX1 proteins (Fig 2). The

Fig 5. Modeling of diffusion in rat left atrial myocytes. (A) Model discretization with an elliptical grid and the Ca2+ reactions incorporated in the model
representing Ca2+ buffering and fluxes. (B) Upper panel shows a simulated line scan image assuming release of Ca2+ only at the periphery of a cell and no
internalCa uptake. Lower panel shows relative fluorescence changes at the cell edge and cell center. Note the slow rate of decline of Ca2+ in the cell center.
(C) Upper panel shows a simulated line scan image with SR Ca2+ uptake included. Lower panel shows the time course of fluorescence changes at the time
points indicated by a, b and c in the upper panel. (D) Upper panel shows calculated line scan image including microscope blurring. Lower panel shows
fluorescence changes at the edge and center of the cell model. The inset shows the radial profile at the peak of the transient for the model (dotted line) and
exemplar experimental data (solid line). Note the close agreement between these data. (E) The time-dependence of spread of the peak fluorescence for the
model (solid line) and exemplar experimental data (stars).

doi:10.1371/journal.pone.0144309.g005
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relative contribution of the transport pathways to Ca2+ extrusion were calculated from the rate
constants[41] and no significant difference between Sham and AoB myocytes were found (Fig
7D).

In order to examine the impact of afterload-induced hypertrophic remodeling on suscepti-
bility to spontaneous Ca2+ release, myocytes were subject to rapid pacing (Fig 8). Following
rapid pacing, spontaneous Ca2+ transients occurred in both Sham and AoB myocytes (e.g. Fig
8A). The averaged profile of the spontaneous Ca2+ transients indicated that Ca2+ release was
not confined to a particular location within the cell (Fig 8B). However, the proportion of cells
showing spontaneous transients was significantly higher in AoB cells (92%) compared with
Sham myocytes (50%; Fig 8C). In addition, the number of spontaneous transients observed per
cell was greater in AoB cells than in Sham (Fig 8D).

Discussion
This study shows that increased afterload leads to atrial cell hypertrophy and an increased sus-
ceptibility to spontaneous Ca2+ transients. This mimics the reported increased atrial arrhyth-
mia risk in hypertensive patients (e.g.[2]). In view of the central role of Ca2+ metabolism in the
generation of spontaneous diastolic electrical activity[8], we examined Ca2+ transport and RyR
distribution in the aortic banded model. Despite a large change in cell dimensions, Ca2+ trans-
port and RyR distribution were hardly affected. There were no changes in the expression of
RyR nor in RyR phosphorylation at the PKA/CaMKII sites, S2808 and S2814 (Fig 2) [21]. On
the other hand, the amplitude of the caffeine-induced Ca2+ transient, an index of SR Ca2+ con-
tent, was reduced without any detectable change in transport via SERCA or NCX. Taken

Fig 6. Caffeine-induced Ca2+ release. (A) representative line scan image of Ca2+ release triggered by caffeine (10 mM). Example is from a Shammyocyte.
Time scale as shown in B. (B) time course of changes in spatially averaged [Ca2+]i of the cell shown in A. Horizontal and vertical lines axes indicate [Ca2+]i
and time scale, respectively. (C) Mean (±SEM) peak F/F0 in the presence of caffeine in Sham (n/N = 10/5) and AoB (n/N = 13/6) cells. *, P<0.05, unpaired t-
test.

doi:10.1371/journal.pone.0144309.g006
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together, our data are consistent with reduced LTCC expression, presumably resulting in
decreased Ca2+ influx, in elevated afterload-induced atrial cellular remodeling.

Spatial heterogeneity in SR Ca2+ release
Myocytes exhibited marked non-uniformity in the Ca2+ transient across the width of the cell
(e.g. lower panels of Fig 4Ai and 4Bi). By modeling 2D centripetal diffusion in an elliptical cell
cross-section we showed that active SR Ca2+ uptake across the cell is essential to produce the
spatio-temporal patterns of Ca2+ release observed. To our knowledge, this is the first report of
such 2D modeling and shows that optical blurring by the microscope must also be considered
to interpret correctly the spatio-temporal movements of Ca2+ across the cell width[29], and

Fig 7. Ca2+ fluxes in hypertrophied atrial myocytes. (A) representative trace of twitch Ca2+ transient. The transient represents an average of 8 transients
elicited prior to application of caffeine (see Fig 6). Solid line represents a fit to Eq 2. (B) representative traces of caffeine-induced Ca2+ transients in the
absence (black trace) and presence (gray trace) of 10 mMNi2+. Solid lines represent fits to Eq 2. (C) fitted rate constants of Ca2+ removal from the cytosol in
Sham (filled circles, n/N = 10/5) and AoB myocytes (open circles, n/N = 13/6). Horizontal bars represent means and vertical lines show standard errors. Data
correspond with those shown in Fig 6C. (D) proportions of Ca2+ flux via the principal transport pathways calculated from the rate constants. There were no
significant differences in rate constants or proportional fluxes between Sham and AoB.

doi:10.1371/journal.pone.0144309.g007
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due to the cell ellipticity, reduction of the problem toward circular cylindrical models or even
one dimension (as previously used in other studies) is likely erroneous.

The modeling shows that without SR Ca2+ uptake across the cell, the time course of decline
of the internal Ca2+ transient is ~10 times slower (Fig 5B), showing that internal SR Ca2+

uptake plays a key role in making sure that the Ca2+ transient at the center of the cell is of com-
parable duration to that seen at the periphery. However, since little SR release occurs from the
deeper SR (despite the presence of RyRs), the Ca2+ that is taken up must return to the cell sur-
face by diffusion within the SR lumen (for subsequent release and/or extrusion), a process rem-
iniscent of the SR vectorial transport and buffer barrier described for smooth muscle cells[42].
This will have been particularly significant following rapid pacing in the present study, when it
can be expected that the SR would become loaded, particularly within the deeper SR, and this
may contribute to the incidence of spontaneous Ca2+ release events in Sham cells (Fig 8) if the
deep SR becomes overloaded (see also below).

Atrial Ca2+ regulation in hypertrophy
The present study is the first explicitly to examine Ca2+ regulation in a purely afterload-
induced atrial hypertrophy. Spontaneous Ca2+ release has been reported to be increased in AF

Fig 8. Spontaneous Ca2+ transients in remodeled left atrial myocytes. (A) Spatially averaged [Ca2+]i obtained from an AoB cell during a period of pacing
at 4 Hz followed by 70 s without stimulation. The resolution in these experiments was insufficient to localize the sites of release. (B) Averaged transverse
profile of spontaneous Ca2+ transients from the cell shown in ‘A’. (C) Shaded area indicates number of Sham and AoBmyocytes showing spontaneous Ca2+

transients after 4 Hz pacing; height of column represents total number of myocytes tested. Data from 4 Sham and 6 AoB hearts. *, P<0.05, Fischer’s exact
test. (D) Number of spontaneous transients in cells showing spontaneous activity after pacing at 4 Hz. *, P<0.05, unpaired t-test.

doi:10.1371/journal.pone.0144309.g008
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in association with changes in RyR function, although SR Ca2+ content was reported to be
unchanged and Na+/Ca2+ exchange function increased[9–11, 43]. Reduced expression of the
LTCC α1c subunit has also been reported in human AF, associated with a decreased L-type
Ca2+ current density [13, 15, 44]. Increased susceptibility to spontaneous Ca2+ release has been
shown to lead to atrial arrhythmogenesis in a canine model of heart failure [23]. The increased
susceptibility to spontaneous atrial Ca2+ release in heart failure has been associated with
increased SR Ca2+ load despite reduced LTCC expression and Ca2+ current[23, 45, 46]. Our
results contrast with those of a recent study of atrial cellular remodeling in a rat model of essen-
tial hypertension in which spontaneous Ca2+ release was not increased in atrial myocytes
despite an increased SR Ca2+ load [47]. While, as found in the present study, LTCC expression
was reduced, in contrast to our findings, expression of RyR2 and NCX1 was also reduced and
phosphorylation of RyR2 at S2808 was increased[47]. In the present study, the amplitude of
the electrically stimulated Ca2+ transient was not different between AoB and Sham myocytes,
despite the reduced SR Ca2+ load and Ca2+ trigger via LTCC. That atrial effective refractory
period has been reported to be unaffected in AoB hearts indicates that atrial action potential
duration was unchanged[4]. Thus, these observations indicate that cytosolic buffering of Ca2+

was reduced in AoB cells, as has been recently reported in an ovine model of heart failure[46].
A reduction in cytosolic buffering would have diminished the difference between Sham and
AoB cells in amplitude of the caffeine-induced transient. For example, in the absence of
changes in SR Ca2+ load, a reduction in cytosolic buffering would have resulted in an increase
in the amplitude of the caffeine-induced transient. Thus, the reduced amplitude of the caffeine-
induced Ca2+ transient in AoB compared with Sham cells in the present study provides robust
evidence of a reduction in atrial SR Ca2+ load through elevated afterload-induced remodeling.

The absence of differences in the present study between Sham and AoB in SERCA and NCX
expression was reflected in the lack of difference in the rate constants of recovery of twitch and
caffeine-induced Ca2+ transients, demonstrating that the activity of the major Ca2+ extrusion
systems, the SR Ca2+ ATPase and the Na+/Ca2+ exchanger, were not affected by the afterload-
induced atrial hypertrophy. Moreover, the values of ktwitch and kCaff were similar to those
reported by Trafford and colleagues in normal atrial myocytes[28].

Given the key role played by SR luminal Ca2+ in regulating spontaneous release [48], it is
notable that the increased susceptibility to spontaneous Ca2+ release in AoB compared with
Sham atrial cells in the present study occurred despite reduced SR Ca2+ load. Presumably, the
increased incidence of spontaneous release events in AoB cells reflects the increased volume of
the cell: As there was no change in RyR distribution in the hypertrophied cells, the number of
RyRs and potential release sites must have been increased across the cell (Fig 3), with the conse-
quence that, even without a change in the RyR gating probability, the incidence of spontaneous
release events following rapid pacing would be increased. Consistent with this proposal, the
mean number of spontaneous transients per cell, including those cells that did not show spon-
taneous Ca2+ transients, was increased ~6.4-fold in AoB compared to Sham cells, a figure that
corresponds well with the ~5.3-fold increased cell volume of AoB relative to Sham cells.

In summary, we have shown in an aortic banded model in rats that elevated afterload causes
atrial cellular hypertrophy in which cellular Ca2+ transport and RyR2 distribution were unaf-
fected but there was an increased susceptibility to spontaneous Ca2+ release, presumably
reflecting maladaptive changes in cell geometry. We suggest that the increased susceptibility to
spontaneous Ca2+ release reported here may underly the increased incidence of atrial tachyar-
rhythmias in conditions of elevated afterload.
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