13 research outputs found

    A GABAergic and peptidergic sleep neuron as a locomotion stop neuron with compartmentalized Ca2+dynamics.

    No full text
    Animals must slow or halt locomotion to integrate sensory inputs or to change direction. In Caenorhabditis elegans, the GABAergic and peptidergic neuron RIS mediates developmentally timed quiescence. Here, we show RIS functions additionally as a locomotion stop neuron. RIS optogenetic stimulation caused acute and persistent inhibition of locomotion and pharyngeal pumping, phenotypes requiring FLP-11 neuropeptides and GABA. RIS photoactivation allows the animal to maintain its body posture by sustaining muscle tone, yet inactivating motor neuron oscillatory activity. During locomotion, RIS axonal Ca2+ signals revealed functional compartmentalization: Activity in the nerve ring process correlated with locomotion stop, while activity in a branch correlated with induced reversals. GABA was required to induce, and FLP-11 neuropeptides were required to sustain locomotion stop. RIS attenuates neuronal activity and inhibits movement, possibly enabling sensory integration and decision making, and exemplifies dual use of one cell across development in a compact nervous system

    Experimentelle und theoretische Untersuchungen zur Kinetik des isotrop-nematischen Phasenuebergangs bei Fluessigkristallen

    No full text
    Copy held by FIZ Karlsruhe; available from UB/TIB Hannover / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    Optogenetic, behavioral and molecular analysis of neuronal networks regulating locomotion in Caenorhabditis elegans

    No full text
    An essential part of the animal survival strategy comprises the ability to control body movement and coordinate long-term navigational strategies, in order to maintain locomotion towards a nutrition source and stay in its vicinity. In the nematode Caenorhabditis elegans (C. elegans) this function is carried out by neuronal circuits, that vary their activity in response to diverse environmental condition. This comprises different classes of neurons, acting together in a sensory, signaling and modulatory system to control body posture and induce behavioral responses. For this reason, one particular goal in the field of neuroscience research is to elucidate the mechanisms of how neuronal circuits integrate multiple sensory cues to navigate the environment. Aim of this study was to analyze the function of a neuronal network comprising the interneurons AVK, as well as the identification of signaling molecules, controlling body posture during food related locomotory behavior. This should be achieved by establishing optogenetic approaches, which provide a non inversive and temporally precise control of neuronal activity and drives the activation or silencing of individual neurons, to alter the neuronal basis of behavior. Animals exposed to food perform a dwelling-like behavior, characterized by a slowing of locomotion with a reduced crawling distance and an irregular movement, accompanied by a high frequency of pauses, reversals and directional changes. Upon food-removal, they initiate a local-search behavior with the same behavioral characteristics, but with a more pronounced sinusoidal movement. After a prolonged period of unsuccessful food finding, animals exhibited long runs with reduced pauses, reversals and turnings, increasing their maximal covered distance, indicated as dispersal behavior. Acute photoinhibition of AVK neurons, mediated by cell-specific expression of halorhodopsin (NpHR) caused the animals to perform a dwelling-like locomotory state with increased bending angles, as seen during local-search behavior. Thus, food-induced behavioral effects are mimicked by the optogenetic manipulation of AVK interneurons. In this study, signaling molecules were ascertained by cell specific mRNA profiling of AVK neurons, mediating these behavioral responses. It was able to demonstrate, that flp-1, coding for a FMRFamidelike neuropeptide, is one of the genes with the highest distribution in AVK. In the absence of food, AVK neurons continuously release the FMRFamide-like neuropeptide FLP-1 to inhibit a subset of target motoneurons, leading the animals to maintain a low body curvature to promote dispersing behavior. Conversely, if AVK was inhibited by NpHR or the presence of food, less FLP-1 was secreted to the body fluid, indicated by reduced intracellular fluorescence levels of mCherry-tagged FLP-1 proteins in the scavenger cells. The search of a FLP-1 receptor was successful by in vitro investigation on G protein-coupled receptors (GPCRs) and neuropeptide ligands, revealing NPR-6 to be activated by FLP-1 neuropeptides, but with a low potency. Expression pattern of the NPR-6 receptor indicated receptor localization in in the VC ventral cord and SMB head motoneurons, as well as in a subset of other neurons required for chemosensation and feeding. AVK interneurons are highly coupled to SMB head motoneurons, forming electrical synapses composed of the gap junction protein subunits UNC-7 and UNC-9. Elimination of SMB or gap junction genes using cell ablation and RNA interference, respectively, phenocopied effects of AVK inhibition on bending angles. Furthermore, this study was able to demonstrate that these neurons get inhibited during FLP-1 transmission to the NPR-6 receptor, which was required to mediate AVK effects on crawling behavior. Consequently, photoinhibition of AVK caused disinhibition of VC and SMB neurons, in order to enhance sinusoidal movement and to induce a local-search related locomotory behavior. Thereby, FLP-1 neuropeptide transmission is the preferred used signaling pathway over direct gap junction coupling. Additional neuropeptides and receptors were identified to be essential downstream to AVK neurons to mediate effects on body curvature and locomotory behavior as well. The high-potency FRPR-7 receptor was shown to mediate FLP-1 peptide effects on undulatory motion during swimming in a liquid environment, rather than crawling locomotion on a solid surface. This result suggests that the receptor NPR-6 is required for FLP-1 peptide effects on bending and crawling locomotion, whereas conversely the receptor FRPR-7 is addressed by FLP-1 peptides to exclusively regulate swimming behavior. The FRPR-7 receptor is expressed in the AIM and NSM motoneurons, which are suggested to be the primary neuronal candidates mediating swimming behavior. Furthermore, this study provides evidence, that FRPR-7 acts in the DVC interneuron to control spontaneous reversal behavior, most probably by inhibitory FLP-1 signaling from the AVK neurons. Among other neuropeptides, the FMRFamide-like peptide FLP-26 binds with higher affinity to NPR-6 receptors than FLP-1 peptides. FLP-26 peptides are expressed in the SMB motoneurons, where they are able to further potentiate FLP-1 inhibitory effects by simultaneous binding to NPR-6. ..

    Lysosomal activity regulates Caenorhabditis elegans

    No full text

    Epidermal growth factor signaling promotes sleep through a combined series and parallel neural circuit.

    No full text
    Sleep requires sleep-active neurons that depolarize to inhibit wake circuits. Sleep-active neurons are under the control of homeostatic mechanisms that determine sleep need. However, little is known about the molecular and circuit mechanisms that translate sleep need into the depolarization of sleep-active neurons. During many stages and conditions in C. elegans, sleep requires a sleep-active neuron called RIS. Here, we defined the transcriptome of RIS and discovered that genes of the epidermal growth factor receptor (EGFR) signaling pathway are expressed in RIS. Because of cellular stress, EGFR directly activates RIS. Activation of EGFR signaling in the ALA neuron has previously been suggested to promote sleep independently of RIS. Unexpectedly, we found that ALA activation promotes RIS depolarization. Our results suggest that ALA is a drowsiness neuron with two separable functions: (1) it inhibits specific behaviors, such as feeding, independently of RIS, (2) and it activates RIS. Whereas ALA plays a strong role in surviving cellular stress, surprisingly, RIS does not. In summary, EGFR signaling can depolarize RIS by an indirect mechanism through activation of the ALA neuron that acts upstream of the sleep-active RIS neuron and through a direct mechanism using EGFR signaling in RIS. ALA-dependent drowsiness, rather than RIS-dependent sleep bouts, appears to be important for increasing survival after cellular stress, suggesting that different types of behavioral inhibition play different roles in restoring health

    Food Sensation Modulates Locomotion by Dopamine and Neuropeptide Signaling in a Distributed Neuronal Network

    No full text
    Finding food and remaining at a food source are crucial survival strategies. We show how neural circuits and signaling molecules regulate these food-related behaviors in Caenorhabditis elegans. In the absence of food, AVK interneurons release FLP-1 neuropeptides that inhibit motorneurons to regulate body posture and velocity, thereby promoting dispersal. Conversely, AVK photoinhibition promoted dwelling behavior. We identified FLP-1 receptors required for these effects in distinct motoneurons. The DVA interneuron antagonizes signaling from AVK by releasing cholecystokinin-like neuropeptides that potentiate cholinergic neurons, in response to dopaminergic neurons that sense food. Dopamine also acts directly on AVK via an inhibitory dopamine receptor. Both AVK and DVA couple to head motoneurons by electrical and chemical synapses to orchestrate either dispersal or dwelling behavior, thus integrating environmental and proprioceptive signals. Dopaminergic regulation of food-related behavior, via similar neuropeptides, may be conserved in mammals.status: Published onlin

    A GABAergic and peptidergic sleep neuron as a locomotion stop neuron with compartmentalized Ca2+ dynamics

    No full text
    Animals must slow or halt locomotion to integrate sensory inputs or to change direction. In Caenorhabditis elegans, the GABAergic and peptidergic neuron RIS mediates developmentally timed quiescence. Here, we show RIS functions additionally as a locomotion stop neuron. RIS optogenetic stimulation caused acute and persistent inhibition of locomotion and pharyngeal pumping, phenotypes requiring FLP-11 neuropeptides and GABA. RIS photoactivation allows the animal to maintain its body posture by sustaining muscle tone, yet inactivating motor neuron oscillatory activity. During locomotion, RIS axonal Ca2+ signals revealed functional compartmentalization: Activity in the nerve ring process correlated with locomotion stop, while activity in a branch correlated with induced reversals. GABA was required to induce, and FLP-11 neuropeptides were required to sustain locomotion stop. RIS attenuates neuronal activity and inhibits movement, possibly enabling sensory integration and decision making, and exemplifies dual use of one cell across development in a compact nervous system.status: publishe
    corecore