32 research outputs found

    Electrophysiological assessment methodology of sensory processing dysfunction in schizophrenia and dementia of the Alzheimer type

    Get PDF
    Schizophrenia and Alzheimer’s disease impacts on various sensory processings are extensively reviewed in the present publication. This article describes aspects of a research project whose aim is to delineate the neurobiology that may underlie Social Withdrawal in Alzheimer’s disease, Schizophrenia and Major Depression. This is a European-funded IMI 2 project, identified as PRISM (Psychiatric Ratings using Intermediate Stratified Markers). This paper focuses specifically on the selected electrophysiological paradigms chosen based on a comprehensive review of all relevant literature and practical constraints. The choice of the electrophysiological biomarkers were fundamentality based their metrics and capacity to discriminate between populations. The selected electrophysiological paradigms are resting state EEG, auditory mismatch negativity, auditory and visual based oddball paradigms, facial emotion processing ERP’s and auditory steady-state response. The primary objective is to study the effect of social withdrawal on various biomarkers and endophenotypes found altered in the target populations. This has never been studied in relationship to social withdrawal, an important component of CNS diseases

    Reproducibility in the absence of selective reporting : An illustration from large-scale brain asymmetry research

    Get PDF
    Altres ajuts: Max Planck Society (Germany).The problem of poor reproducibility of scientific findings has received much attention over recent years, in a variety of fields including psychology and neuroscience. The problem has been partly attributed to publication bias and unwanted practices such as p-hacking. Low statistical power in individual studies is also understood to be an important factor. In a recent multisite collaborative study, we mapped brain anatomical left-right asymmetries for regional measures of surface area and cortical thickness, in 99 MRI datasets from around the world, for a total of over 17,000 participants. In the present study, we revisited these hemispheric effects from the perspective of reproducibility. Within each dataset, we considered that an effect had been reproduced when it matched the meta-analytic effect from the 98 other datasets, in terms of effect direction and significance threshold. In this sense, the results within each dataset were viewed as coming from separate studies in an "ideal publishing environment," that is, free from selective reporting and p hacking. We found an average reproducibility rate of 63.2% (SD = 22.9%, min = 22.2%, max = 97.0%). As expected, reproducibility was higher for larger effects and in larger datasets. Reproducibility was not obviously related to the age of participants, scanner field strength, FreeSurfer software version, cortical regional measurement reliability, or regional size. These findings constitute an empirical illustration of reproducibility in the absence of publication bias or p hacking, when assessing realistic biological effects in heterogeneous neuroscience data, and given typically-used sample sizes

    De erkenning en tenuitvoerlegging van de WCAM in de EU

    No full text
    corecore