97 research outputs found

    Soluble silicon patterns and templates:calcium phosphate nanocrystal deposition in collagen type 1

    Get PDF
    Patterned mineralisation is a feature of many hard-tissues. The impressive mechanical properties exhibited by such tissues can be, in part, attributed to the patterned deposition of mineral within the organic matrix. Although not thermodynamically favourable, the deposition of calcium phosphate based mineral within collagen fibres occurs in vivo in bone and dentine. As a consequence, numerous researchers have investigated how matrix proteins may be conditioned to enable patterned mineral deposition to recapitulate the structures found in nature. In this study, we have demonstrated that this patterned mineralisation of collagen type I may be induced simply by the pretreatment of the collagen with orthosilicic acid (OSA). The OSA treatment of the collagen resulted in a structural change to the collagen fibres, modifying fibril diameter and changing the kinetics of fibre formation. NMR demonstrated that the OSA preferentially located to the termini of the procollagen fibrils, thereby templating the formation of apatitic calcium phosphate crystals within the collagen fibrils (as shown using TEM, EDX and SAED). This work demonstrates how simple inorganic ions can have potent effects on structuring biological precipitates and suggests why trace quantities of silicon ions are essential to the formation of healthy hard tissues

    Analogue experiments on the rise of large bubbles through a solids-rich suspension:A “weak plug” model for Strombolian eruptions

    Get PDF
    Physical interactions between bubbles and crystals affect gas migration and may play a major role in eruption dynamics of crystal-rich magmas. Strombolian eruptions represent an end member for bubble-crystal interactions, in which large bubbles (significantly larger than the crystal size) rise through a crystal-rich near-surface magma. Indeed, volcanoes that produce Strombolian eruptions often generate ejecta with > 30 vol% (often > 45 vol%) average crystallinity. At Stromboli Volcano, Italy, average crystallinity can reach 55 vol%, which is approaching the eruptibility limit for magmas. At such high crystallinities the solids interact mechanically with each other and with bubbles. This complex rheology complicates the two-phase (liquid-gas) slug flow model often applied to Strombolian eruptions. To examine the effect of crystals on bubble rise, we performed analogue experiments in which large bubbles rise in a vertical tube filled with silicone oil and polypropylene particles. The particles have a slightly lower density than the oil, and therefore form a layer of oil + particles at the upper surface. We varied surface pressure, particle volume fraction, length of the particle-bearing cap, and bubble size to examine the ways in which these parameters influence Strombolian-type eruptions. We show that in experiments, suspended solids begin to affect bubble rise dynamics at particle volume fractions as low as 30 vol% (or, when divided by the random close packing value, a normalized particle fraction φ=0.64). Bubbles in experiments with higher particle contents deform as they rise and burst through a small aperture, generating surface fountains that begin abruptly and decay slowly, and longer-lasting acoustic signals of lower amplitude than in particle-poor experiments. Particle fractions > 38 vol% (φ>0.80) generated strong deformations on fast-expanding bubbles that applied a high stress on the cap, but they trapped bubbles that were less overpressured. Qualitatively, the gas release behavior observed in particle-rich experiments is consistent with observations of Strombolian eruptions. Moreover, we estimate that the observed crystallinity of pyroclasts at Stromboli volcano represents φ>0.8. From this we suggest a “weak plug” model for Strombolian eruptions that evolves towards a low-viscosity equivalent of Vulcanian-style plug failure with a more crystalline, stronger, and less permeable plug. Importantly, this model allows the rise of several bubbles in the conduit at the same time and suggests that longer-lasting, more pulsatory and complex eruptions may reveal an increase in near-surface crystallinity, shedding some light on changing conduit conditions that could help determine the different gas rise regimes involved in passive degassing, puffing, and different expressions of Strombolian explosions

    Population turnover in remote oceania shortly after initial settlement

    Get PDF
    Ancient DNA from Vanuatu and Tonga dating to about 2,900–2,600 years ago (before present, BP) has revealed that the “First Remote Oceanians” associated with the Lapita archaeological culture were directly descended from the population that, beginning around 5000 BP, spread Austronesian languages from Taiwan to the Philippines, western Melanesia, and eventually Remote Oceania. Thus, ancestors of the First Remote Oceanians must have passed by the Papuan-ancestry populations they encountered in New Guinea, the Bismarck Archipelago, and the Solomon Islands with minimal admixture [1]. However, all present-day populations in Near and Remote Oceania harbor >25% Papuan ancestry, implying that additional eastward migration must have occurred. We generated genome-wide data for 14 ancient individuals from Efate and Epi Islands in Vanuatu from 2900–150 BP, as well as 185 present-day individuals from 18 islands. We find that people of almost entirely Papuan ancestry arrived in Vanuatu by around 2300 BP, most likely reflecting migrations a few hundred years earlier at the end of the Lapita period, when there is also evidence of changes in skeletal morphology and cessation of long-distance trade between Near and Remote Oceania [2, 3]. Papuan ancestry was subsequently diluted through admixture but remains at least 80%–90% in most islands. Through a fine-grained analysis of ancestry profiles, we show that the Papuan ancestry in Vanuatu derives from the Bismarck Archipelago rather than the geographically closer Solomon Islands. However, the Papuan ancestry in Polynesia—the most remote Pacific islands—derives from different sources, documenting a third stream of migration from Near to Remote Oceania

    Atomic X-ray Spectroscopy of Accreting Black Holes

    Full text link
    Current astrophysical research suggests that the most persistently luminous objects in the Universe are powered by the flow of matter through accretion disks onto black holes. Accretion disk systems are observed to emit copious radiation across the electromagnetic spectrum, each energy band providing access to rather distinct regimes of physical conditions and geometric scale. X-ray emission probes the innermost regions of the accretion disk, where relativistic effects prevail. While this has been known for decades, it also has been acknowledged that inferring physical conditions in the relativistic regime from the behavior of the X-ray continuum is problematic and not satisfactorily constraining. With the discovery in the 1990s of iron X-ray lines bearing signatures of relativistic distortion came the hope that such emission would more firmly constrain models of disk accretion near black holes, as well as provide observational criteria by which to test general relativity in the strong field limit. Here we provide an introduction to this phenomenon. While the presentation is intended to be primarily tutorial in nature, we aim also to acquaint the reader with trends in current research. To achieve these ends, we present the basic applications of general relativity that pertain to X-ray spectroscopic observations of black hole accretion disk systems, focusing on the Schwarzschild and Kerr solutions to the Einstein field equations. To this we add treatments of the fundamental concepts associated with the theoretical and modeling aspects of accretion disks, as well as relevant topics from observational and theoretical X-ray spectroscopy.Comment: 63 pages, 21 figures, Einstein Centennial Review Article, Canadian Journal of Physics, in pres

    Observations of the High Redshift Universe

    Get PDF
    (Abridged) In these lectures aimed for non-specialists, I review progress in understanding how galaxies form and evolve. Both the star formation history and assembly of stellar mass can be empirically traced from redshifts z~6 to the present, but how the various distant populations inter-relate and how stellar assembly is regulated by feedback and environmental processes remains unclear. I also discuss how these studies are being extended to locate and characterize the earlier sources beyond z~6. Did early star-forming galaxies contribute significantly to the reionization process and over what period did this occur? Neither theory nor observations are well-developed in this frontier topic but the first results presented here provide important guidance on how we will use more powerful future facilities.Comment: To appear in `First Light in Universe', Saas-Fee Advanced Course 36, Swiss Soc. Astrophys. Astron. in press. 115 pages, 64 figures (see http://www.astro.caltech.edu/~rse/saas-fee.pdf for hi-res figs.) For lecture ppt files see http://obswww.unige.ch/saas-fee/preannouncement/course_pres/overview_f.htm

    Physical Processes in Star Formation

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00693-8.Star formation is a complex multi-scale phenomenon that is of significant importance for astrophysics in general. Stars and star formation are key pillars in observational astronomy from local star forming regions in the Milky Way up to high-redshift galaxies. From a theoretical perspective, star formation and feedback processes (radiation, winds, and supernovae) play a pivotal role in advancing our understanding of the physical processes at work, both individually and of their interactions. In this review we will give an overview of the main processes that are important for the understanding of star formation. We start with an observationally motivated view on star formation from a global perspective and outline the general paradigm of the life-cycle of molecular clouds, in which star formation is the key process to close the cycle. After that we focus on the thermal and chemical aspects in star forming regions, discuss turbulence and magnetic fields as well as gravitational forces. Finally, we review the most important stellar feedback mechanisms.Peer reviewedFinal Accepted Versio
    • …
    corecore