46 research outputs found

    Impaired Induction of Adhesion Molecule Expression in Immortalized Endothelial Cells Leads to Functional Defects in Dynamic Interactions With Lymphocytes

    Get PDF
    Immortalization should overcome the problem of short lifespan and difficult culture of endothelial cells that limited their use in functional studies. We used four different immortalized endothelial cell lines to study dynamic interactions with lymphocytes. Surprisingly, tumor necrosis factor (TNF)α-stimulated human umbilical vein endothelial cells (HUVECs) or human dermal microvascular endothelial cells (HDMECs) readily supported rolling and binding of lymphocytes, whereas none of the immortalized cell lines did. As rolling interactions are primarily mediated by selectins and vascular cell adhesion molecule (VCAM)-1, the endothelial cells were analyzed regarding expression of selectins and other adhesion molecules. Interestingly, cell surface expression of E-selectin could only be detected on HUVEC and HDMEC. Immunocytochemistry showed that some immortalized endothelial cells expressed E-selectin intracellularly following TNFα stimulation, suggesting translation but defective post-translational processing or transport of the molecule. In contrast, other immortalized cell lines did not have detectable levels of E-selectin mRNA, suggesting impaired transcription. VCAM-1 could only be induced on normal and human placental microvascular endothelial cell-A2 endothelial cells, whereas all cell lines expressed intercellular adhesion molecule-1 following TNF stimulation. The immortalized endothelial cells tested here have lost functions that are required for dynamic interactions with immune cells and that are common to primary endothelial cells

    Biocompatible micro-sized cell culture chamber for the detection of nanoparticle-induced IL8 promoter activity on a small cell population

    Get PDF
    In most conventional in vitro toxicological assays, the response of a complete cell population is averaged, and therefore, single-cell responses are not detectable. Such averaging might result in misinterpretations when only individual cells within a population respond to a certain stimulus. Therefore, there is a need for non-invasive in vitro systems to verify the toxicity of nanoscale materials. In the present study, a micro-sized cell culture chamber with a silicon nitride membrane (0.16 mm2) was produced for cell cultivation and the detection of specific cell responses. The biocompatibility of the microcavity chip (MCC) was verified by studying adipogenic and neuronal differentiation. Thereafter, the suitability of the MCC to study the effects of nanoparticles on a small cell population was determined by using a green fluorescence protein-based reporter cell line. Interleukin-8 promoter (pIL8) induction, a marker of an inflammatory response, was used to monitor immune activation. The validation of the MCC-based method was performed using well-characterized gold and silver nanoparticles. The sensitivity of the new method was verified comparing the quantified pIL8 activation via MCC-based and standard techniques. The results proved the biocompatibility and the sensitivity of the microculture chamber, as well as a high optical quality due to the properties of Si3N4. The MCC-based method is suited for threshold- and time-dependent analysis of nanoparticle-induced IL8 promoter activity. This novel system can give dynamic information at the level of adherent single cells of a small cell population and presents a new non-invasive in vitro test method to assess the toxicity of nanomaterials and other compounds

    The oxidative potential of differently charged silver and gold nanoparticles on three human lung epithelial cell types

    Get PDF
    BACKGROUND: Nanoparticle (NPs) functionalization has been shown to affect their cellular toxicity. To study this, differently functionalized silver (Ag) and gold (Au) NPs were synthesised, characterised and tested using lung epithelial cell systems. METHODS: Monodispersed Ag and Au NPs with a size range of 7 to 10 nm were coated with either sodium citrate or chitosan resulting in surface charges from -50 mV to +70 mV. NP-induced cytotoxicity and oxidative stress were determined using A549 cells, BEAS-2B cells and primary lung epithelial cells (NHBE cells). TEER measurements and immunofluorescence staining of tight junctions were performed to test the growth characteristics of the cells. Cytotoxicity was measured by means of the CellTiter-Blue ® and the lactate dehydrogenase assay and cellular and cell-free reactive oxygen species (ROS) production was measured using the DCFH-DA assay. RESULTS: Different growth characteristics were shown in the three cell types used. A549 cells grew into a confluent mono-layer, BEAS-2B cells grew into a multilayer and NHBE cells did not form a confluent layer. A549 cells were least susceptible towards NPs, irrespective of the NP functionalization. Cytotoxicity in BEAS-2B cells increased when exposed to high positive charged (+65-75 mV) Au NPs. The greatest cytotoxicity was observed in NHBE cells, where both Ag and Au NPs with a charge above +40 mV induced cytotoxicity. ROS production was most prominent in A549 cells where Au NPs (+65-75 mV) induced the highest amount of ROS. In addition, cell-free ROS measurements showed a significant increase in ROS production with an increase in chitosan coating. CONCLUSIONS: Chitosan functionalization of NPs, with resultant high surface charges plays an important role in NP-toxicity. Au NPs, which have been shown to be inert and often non-cytotoxic, can become toxic upon coating with certain charged molecules. Notably, these effects are dependent on the core material of the particle, the cell type used for testing and the growth characteristics of these cell culture model systems

    PLoS ONE / Exposure to indoor allergens in different residential settings and its influence on IgE sensitization in a geographically confined Austrian cohort

    Get PDF
    Background Exposure to indoor allergens is crucial for IgE sensitization and development of allergic symptoms. Residential settings influence the allergen amount in house dust and hence allergic sensitization. Within this study, we investigated allergen exposure and molecule-based IgE levels in a geographically confined region and evaluated the impact of housing, pets and cleaning. Methods 501 adolescents from Salzburg, Austria participated in this cross-sectional study. House dust samples were examined regarding major mite, cat, dog, and mold allergens using a multiplex assay. Serum samples of participants were analyzed for specific IgE to Der p 1, Der p 2, Fel d 1, Can f 1 and Alt a 1 using the multiplex array ImmunoCAP ISAC. Information on allergies, living areas, dwelling form (house, flat, farm), pets, and household cleanliness were obtained by a questionnaire. Results In investigated house dust samples, the concentration of cat allergen was highest while the prevalence of mold allergens was very low. Participants showed IgE sensitization to Der p 1 (13.2%), Der p 2 (18.2%), Fel d 1 (14.4%), Can f 1 (2.4%) and Alt a 1 (2.0%). In alpine regions, lower mite allergen concentrations were detected which correlated with reduced IgE levels. A trend for increased sensitization prevalence from rural to alpine to urban regions was noted. Living on farms resulted in lower sensitization prevalence to mite and cat allergens, even though exposure to mites was significantly elevated. The presence of cats was associated with a lower sensitization rate and IgE levels to cat and mite allergens, and less frequent allergic diseases. Cleaning did not impact allergen concentrations, while IgE reactivity to mites and allergic diseases were more pronounced when living in cleaner homes. Conclusion Allergen exposure to indoor allergens was influenced by setting of homes. Living in a farm environment and having a cat at home showed a pro tective effect for IgE sensitization and allergies. This cross-sectional study in combination with hereditary and lifestyle factors enables development of risk schemes for a more efficient management and potential prevention of allergic diseases

    Nitration of the Pollen Allergen Bet v 1.0101 Enhances the Presentation of Bet v 1-Derived Peptides by HLA-DR on Human Dendritic Cells

    Get PDF
    Nitration of pollen derived allergens can occur by NO2 and ozone in polluted air and it has already been shown that nitrated major birch (Betula verrucosa) pollen allergen Bet v 1.0101 (Bet v 1) exhibits an increased potency to trigger an immune response. However, the mechanisms by which nitration might contribute to the induction of allergy are still unknown. In this study, we assessed the effect of chemically induced nitration of Bet v 1 on the generation of HLA-DR associated peptides. Human dendritic cells were loaded with unmodified Bet v 1 or nitrated Bet v 1, and the naturally processed HLA-DR associated peptides were subsequently identified by liquid chromatography-mass spectrometry. Nitration of Bet v 1 resulted in enhanced presentation of allergen-derived HLA-DR-associated peptides. Both the copy number of Bet v 1 derived peptides as well as the number of nested clusters was increased. Our study shows that nitration of Bet v 1 alters antigen processing and presentation via HLA-DR, by enhancing both the quality and the quantity of the Bet v 1-specific peptide repertoire. These findings indicate that air pollution can contribute to allergic diseases and might also shed light on the analogous events concerning the nitration of self-proteins
    corecore