568 research outputs found

    Dynamic covalent crosslinked hyaluronic acid hydrogels and nanomaterials for biomedical applications

    Get PDF
    Hyaluronic acid (HA), one of the main components of the extracellular matrix (ECM), is extensively used in the design of hydrogels and nanoparticles for different biomedical applications due to its critical role in vivo, degradability by endogenous enzymes, and absence of immunogenicity. HA-based hydrogels and nanoparticles have been developed by utilizing different crosslinking chemistries. The development of such crosslinking chemistries indicates that even subtle differences in the structure of reactive groups or the procedure of crosslinking may have a profound impact on the intended mechanical, physical and biological outcomes. There are widespread examples of modified HA polymers that can form either covalently or physically crosslinked biomaterials. More recently, studies have been focused on dynamic covalent crosslinked HA-based biomaterials since these types of crosslinking allow the preparation of dynamic structures with the ability to form in situ, be injectable, and have self-healing properties. In this review, HA-based hydrogels and nanomaterials that are crosslinked by dynamic-covalent coupling (DCC) chemistry have been critically assessed.publishedVersionPeer reviewe

    Glycosaminoglycans' for brain health: Harnessing glycosaminoglycan based biomaterials for treating central nervous system diseases and in-vitro modeling

    Get PDF
    Dysfunction of the central nervous system (CNS) following traumatic brain injuries (TBI), spinal cord injuries (SCI), or strokes remains challenging to address using existing medications and cell-based therapies. Although therapeutic cell administration, such as stem cells and neuronal progenitor cells (NPCs), have shown promise in regenerative properties, they have failed to provide substantial benefits. However, the development of living cortical tissue engineered grafts, created by encapsulating these cells within an extracellular matrix (ECM) mimetic hydrogel scaffold, presents a promising functional replacement for damaged cortex in cases of stroke, SCI, and TBI. These grafts facilitate neural network repair and regeneration following CNS injuries. Given that natural glycosaminoglycans (GAGs) are a major constituent of the CNS, GAG-based hydrogels hold potential for the next generation of CNS healing therapies and in vitro modeling of CNS diseases. Brain-specific GAGs not only offer structural and biochemical signaling support to encapsulated neural cells but also modulate the inflammatory response in lesioned brain tissue, facilitating host integration and regeneration. This review briefly discusses different roles of GAGs and their related proteoglycan counterparts in healthy and diseases brain and explores current trends and advancements in GAG-based biomaterials for treating CNS injuries and modeling diseases. Additionally, it examines injectable, 3D bioprintable, and conductive GAG-based scaffolds, highlighting their clinical potential for in vitro modeling of patient-specific neural dysfunction and their ability to enhance CNS regeneration and repair following CNS injury in vivo

    Unveiling extracellular matrix assembly: Insights and approaches through bioorthogonal chemistry

    Get PDF
    Visualizing cells, tissues, and their components specifically without interference with cellular functions, such as biochemical reactions, and cellular viability remains important for biomedical researchers worldwide. For an improved understanding of disease progression, tissue formation during development, and tissue regeneration, labeling extracellular matrix (ECM) components secreted by cells persists is required. Bioorthogonal chemistry approaches offer solutions to visualizing and labeling ECM constituents without interfering with other chemical or biological events. Although biorthogonal chemistry has been studied extensively for several applications, this review summarizes the recent advancements in using biorthogonal chemistry specifically for metabolic labeling and visualization of ECM proteins and glycosaminoglycans that are secreted by cells and living tissues. Challenges, limitations, and future directions surrounding biorthogonal chemistry involved in the labeling of ECM components are discussed. Finally, potential solutions for improvements to biorthogonal chemical approaches are suggested. This would provide theoretical guidance for labeling and visualization of de novo proteins and polysaccharides present in ECM that are cell-secreted for example during tissue remodeling or in vitro differentiation of stem cells

    Image Compression Using SPIHT with Modified Spatial Orientation Trees

    Get PDF
    AbstractA new way of reordering spatial orientation tree of SPIHT for improving compression efficiencies for monochrome and color images has been proposed. Reordering ensures that SPIHT algorithm codes more significant information in the initial bits. List of insignificant pixels and sets are initialized with fewer number of coefficients compared to conventional SPIHT for monochrome images. For color images an altered parent offspring relationship and an extra level of wavelet decomposition on chrominance planes were performed. PSNR improvement of 32.06% was achieved at 0.01 bpp for monochrome images and 19.76% for color images at 0.05 bpp compared to conventional schemes

    Biomimetic polyelectrolyte coating of stem cells suppresses thrombotic activation and enhances its survival and function

    Get PDF
    Mesenchymal stem cells (MSCs) therapy is a promising approach for treating inflammatory diseases due to their immunosuppressive and tissue repair characteristics. However, allogenic transplantation of MSCs induces thrombotic complications in some patients which limits its potential for clinical translation. To address this challenge, we have exploited the bioactivity of heparin, a well-known anticoagulant and immunosuppressive polysaccharide that is widely used in clinics. We have developed a smart layer-by-layer (LbL) coating strategy using gelatin and heparin polymers exploiting their overall positive and negative charges that enabled efficient complexation with the MSCs' glycocalyx. The stable coating of MSCs suppressed complement attack and mitigated thrombotic activation as demonstrated in human whole blood. Gratifyingly, the MSC coating retained its immunosuppressive properties and differentiation potential when exposed to inflammatory conditions and differentiation factors. We believe the simple coating procedure of MSCs will increase allogenic tolerance and circumvent the major challenge of MSCs transplantation.publishedVersionPeer reviewe

    Heparin-Derived Theranostic Nanoprobes Overcome the Blood-Brain Barrier and Target Glioma in Murine Model

    Get PDF
    The poor permeability of theranostic agents across the blood-brain barrier (BBB) significantly hampers the development of new treatment modalities for neurological diseases. A new biomimetic nanocarrier is discovered using heparin (HP) that effectively passes the BBB and targets glioblastoma. Specifically, HP-coated gold nanoparticles (HP-AuNPs) are designed that are labeled with three different imaging modalities namely, fluorescein (FITC-HP-AuNP), radioisotope (68)Gallium (Ga-68-HP-AuNPs), and MRI active gadolinium (Gd-HP-AuNPs). The systemic infusion of FITC-HP-AuNPs in three different mouse strains (C57BL/6JRj, FVB, and NMRI-nude) displays excellent penetration and reveals uniform distribution of fluorescent particles in the brain parenchyma (69-86%) with some accumulation in neurons (8-18%) and microglia (4-10%). Tail-vein administration of radiolabeled Ga-68-HP-AuNPs in healthy rats also show Ga-68-HP-AuNP inside the brain parenchyma and in areas containing cerebrospinal fluid, such as the lateral ventricles, the cerebellum, and brain stem. Finally, tail-vein administration of Gd-HP-AuNPs (that displays approximate to threefold higher relaxivity than that of commercial Gd-DTPA) in an orthotopic glioblastoma (U87MG xenograft) model in nude mice demonstrates enrichment of T1-contrast at the intracranial tumor with a gradual increase in the contrast in the tumor region between 1 and 3 h. It is believed, the finding offers the untapped potential of HP-derived-NPs to deliver cargo molecules for treating neurological disorders.Peer reviewe

    Gold nanoparticles approach to detect chondroitin sulphate and hyaluronic acid urothelial coating

    Get PDF
    This study investigated the location of hyaluronic acid (HA)-and chondroitin sulphate (CS)-coated gold nanoparticles in rabbit bladder and evaluated gene expression of CD44, RHAMM and ICAM-1 receptors involved in HA and CS transport into the cell. Gold nanoparticles were synthesised by reduction of gold salts with HA or CS to form HA-AuNPs and CS-AuNPs. Bladder samples were incubated with CS-AuNPs and HA-AuNPs or without glycosaminoglycans. Transmission electron microscopy, optic microscopy and scanning electron microscopy were used to determine the location of the synthesised AuNPs. Real-time PCR was used to analyse expression of urothelial cell receptors CD44, RHAMM, ICAM-1, after ex vivo administration of CS-AuNPs and HA-AuNPs. We showed that HA-AuNPs and CS-AuNPs were located in the cytoplasm and tight junctions of urothelial umbrella cells; this appearance was absent in untreated bladders. There were no significant differences in gene expression levels for CD44, RHAMM and ICAM-1 receptors in treated versus control bladder tissues. In conclusion, we clearly showed the presence of exogenous GAGs in the bladder surface and the tight junctions between umbrella cells, which is important in the regeneration pathway of the urothelium. The GAGs-AuNPs offer a promising approach to understanding the biophysical properties and imaging of urothelial tissue

    New Methodology to Mitigate the Effects of Pulsed Loads in Microgrid Systems

    Get PDF
    ABSTRACT: Microgrid power systems are becoming increasingly common in a large number of applications. In this paper, the mitigation of the adverse effects of pulsed power loads on the microgrid systemsis considered. In microgrid power systems, pulsed loads are particularly problematic since the total system inertia is finite. Examples include ships and aircraft with high power radars, pulsed weapons, and electromagnetic launch and recovery systems. In these systems, energy is collected from the system over a finite time period, locally stored, and then rapidly utilized. Herein, a new strategy, Profile Based Control, to accommodate these loads is presented. This strategy is based on identifying the optimal charging profile. Also, later onwards, this new strategy is combined with load coordination. And it is found that current waveform is more smoothened and the output power is improved from 2489W to 3712W
    corecore