40 research outputs found

    Achieving conservation outcomes in plant mitigation translocations: the need for global standards

    Get PDF
    Many countries have legislation intended to limit or offset the impact of anthropogenic disturbance and development on threatened plants. Translocations are often integral to those mitigation policies. When translocation is used exclusively to mitigate development impacts, it is often termed a ‘mitigation translocation.’ However, both the terminology and processes vary regarding interpretation and application, resulting in inconsistent standards, often leading to poorly planned and implemented projects. These mitigation projects rarely achieve the intended ‘no net loss’ of protected species due to issues with timelines and procedures that result in the mortality of translocated individuals. Instead, such projects are often process driven, focused on meeting legislative requirements which enable the development to proceed, rather than meaningful attempts to minimise the ecological impact of developments and demonstrate conservation outcomes. Here, we propose to reframe mitigation translocations as conservation driven, ensuring best practice implementation and hence, a quantified no net loss for impacted species. These methods include redefining the term mitigation translocation to include conservation objectives and outlining issues associated with the mitigation translocation processes worldwide. We also nominate global standards of practice to which all proposals should adhere, to ensure each project follows a trajectory towards quantified success, with genuine impact mitigation. These proposed standards focus on building efficient translocation plans and improving governance to facilitate a transition from project centred to ecology-driven translocation. Employment of these standards is relevant to development proponents, government regulators, researchers, and translocation practitioners and will increase the likelihood of conservation gains within the mitigation translocation sector

    Fire History from Life-History: Determining the Fire Regime that a Plant Community Is Adapted Using Life-Histories

    Get PDF
    Wildfire is a fundamental disturbance process in many ecological communities, and is critical in maintaining the structure of some plant communities. In the past century, changes in global land use practices have led to changes in fire regimes that have radically altered the composition of many plant communities. As the severe biodiversity impacts of inappropriate fire management regimes are recognized, attempts are being made to manage fires within a more ‘natural’ regime. In this aim, the focus has typically been on determining the fire regime to which the community has adapted. Here we take a subtly different approach and focus on the probability of a patch being burnt. We hypothesize that competing sympatric taxa from different plant functional groups are able to coexist due to the stochasticity of the fire regime, which creates opportunities in both time and space that are exploited differentially by each group. We exploit this situation to find the fire probability at which three sympatric grasses, from different functional groups, are able to co-exist. We do this by parameterizing a spatio-temporal simulation model with the life-history strategies of the three species and then search for the fire frequency and scale at which they are able to coexist when in competition. The simulation gives a clear result that these species only coexist across a very narrow range of fire probabilities centred at 0.2. Conversely, fire scale was found only to be important at very large scales. Our work demonstrates the efficacy of using competing sympatric species with different regeneration niches to determine the probability of fire in any given patch. Estimating this probability allows us to construct an expected historical distribution of fire return intervals for the community; a critical resource for managing fire-driven biodiversity in the face of a growing carbon economy and ongoing climate change

    A silviculture-oriented spatio-temporal model for germination in Pinus pinea L. in the Spanish Northern Plateau based on a direct seeding experiment

    Get PDF
    Natural regeneration in Pinus pinea stands commonly fails throughout the Spanish Northern Plateau under current intensive regeneration treatments. As a result, extensive direct seeding is commonly conducted to guarantee regeneration occurrence. In a period of rationalization of the resources devoted to forest management, this kind of techniques may become unaffordable. Given that the climatic and stand factors driving germination remain unknown, tools are required to understand the process and temper the use of direct seeding. In this study, the spatio-temporal pattern of germination of P. pinea was modelled with those purposes. The resulting findings will allow us to (1) determine the main ecological variables involved in germination in the species and (2) infer adequate silvicultural alternatives. The modelling approach focuses on covariates which are readily available to forest managers. A two-step nonlinear mixed model was fitted to predict germination occurrence and abundance in P. pinea under varying climatic, environmental and stand conditions, based on a germination data set covering a 5-year period. The results obtained reveal that the process is primarily driven by climate variables. Favourable conditions for germination commonly occur in fall although the optimum window is often narrow and may not occur at all in some years. At spatial level, it would appear that germination is facilitated by high stand densities, suggesting that current felling intensity should be reduced. In accordance with other studies on P. pinea dispersal, it seems that denser stands during the regeneration period will reduce the present dependence on direct seeding

    Ecological implications of fine-scale fire patchiness and severity in tropical savannas of northern Australia

    Get PDF
    Research ArticleUnderstanding fine-scale fire patchiness has significant implications for ecological processes and biodiversity conservation. It can affect local extinction of and recolonisation by relatively immobile fauna and poorly seed-dispersed flora in fire-affected areas. This study assesses fine-scale fire patchiness and severity, and associated implications for biodiversity, in north Australian tropical savanna systems. We used line transects to sample burning patterns of ground layer vegetation in different seasons and vegetation structure types, within the perimeter of 35 fires that occurred between 2009 and 2011. We evaluated two main fire characteristics: patchiness (patch density and mean patch length) and severity (inferred from char and scorch heights, and char and ash proportions). The mean burned area of ground vegetation was 83 % in the early dry season (EDS: May to July) and 93 % in the late dry season (LDS: August to November). LDS fires were less patchy (smaller and fewer unburned patches), and had higher fire severity (higher mean char and scorch heights, and twice the proportion of ash) than EDS fires. Fire patchiness varied among vegetation types, declining under more open canopy structure. The relationship between burned area and fire severity depended on season, being strongly correlated in the EDS and uncorrelated in the LDS. Simulations performed to understand the implications of patchiness on the population dynamics of fire-interval sensitive plant species showed that small amounts of patchiness substantially enhance survival. Our results indicate that the ecological impacts of high frequency fires on firesensitive regional biodiversity elements are likely to be lower than has been predicted from remotely sensed studies that are based on assumptions of homogeneous burninginfo:eu-repo/semantics/publishedVersio

    Severe effects of long-term drought on calcareous grassland seed banks

    Get PDF
    Climate change models project shifts in precipitation patterns at regional and global scales. Increases in dry areas and the occurrence of drought predicted in future scenarios are likely to threaten grassland ecosystems. Calcareous grassland seed banks have proven to be resistant to short-term drought, but their responses to long-term drought are unknown. Here we show that 14 years of summer drought changed calcareous grassland seed bank composition, reducing its size and richness, and that these responses do not simply reflect patterns in the above-ground vegetation. Moreover, the effect of drought was larger on seed banks than on vegetation, and above-ground responses mediated by soil depth were less evident in the seed bank than in the vegetation. These results demonstrate that the severity of drought effects on calcareous grasslands is larger than previously thought, and show that this ecosystem is highly vulnerable and has low resilience to predicted decreases in soil moisture
    corecore