129 research outputs found

    Revisited role of the placenta in bile acid homeostasis.

    Get PDF
    To date, the discussion concerning bile acids (BAs) during gestation is almost exclusively linked to pregnancy complications such as intrahepatic cholestasis of pregnancy (ICP) when maternal serum BA levels reach very high concentrations (>100 μM). Generally, the placenta is believed to serve as a protective barrier avoiding exposure of the growing fetus to excessive amounts of maternal BAs that might cause detrimental effects (e.g., intrauterine growth restriction and/or increased vulnerability to metabolic diseases). However, little is known about the precise role of the placenta in BA biosynthesis, transport, and metabolism in healthy pregnancies when serum BAs are at physiological levels (i.e., low maternal and high fetal BA concentrations). It is well known that primary BAs are synthesized from cholesterol in the liver and are later modified to secondary BA species by colonic bacteria. Besides the liver, BA synthesis in extrahepatic sites such as the brain elicits neuroprotective actions through inhibition of apoptosis as well as oxidative and endoplasmic reticulum stress. Even though historically BAs were thought to be only "detergent molecules" required for intestinal absorption of dietary fats, they are nowadays acknowledged as full signaling molecules. They modulate a myriad of signaling pathways with functional consequences on essential processes such as gluconeogenesis -one of the principal energy sources of the fetus- and cellular proliferation. The current manuscript discusses the potential multipotent roles of physiologically circulating BAs on developmental processes during gestation and provides a novel perspective in terms of the importance of the placenta as a previously unknown source of BAs. Since the principle "not too much, not too little" applicable to other signaling molecules may be also true for BAs, the risks associated with fetal exposure to excessive levels of BAs are discussed

    Cholesterol Transport and Regulation in the Mammary Gland

    Get PDF
    The milk-producing alveolar epithelial cells secrete milk that remains after birth the principal source of nutrients for neonates. Milk secretion and composition are highly regulated processes via integrated actions of hormones and local factors which involve specific receptors and downstream signal transduction pathways. Overall milk composition is similar among mammalian species, although the content of individual constituents such as lipids may significantly differ from one species to another. The milk lipid fraction is essentially composed of triglycerides, which represent more than 95% of the total lipids in human and commercialized bovine milk. Though sterols, including cholesterol, which is the major milk sterol, represent less than 0.5% of the total milk lipid fraction, they are of key importance for several biological processes. Cholesterol is required for the formation of biological membranes especially in rapidly growing organisms, and for the synthesis of sterol-based compounds. Cholesterol found in milk originates predominantly from blood uptake and, to a certain extent, from local synthesis in the mammary tissue. The present review summarizes current knowledge on cellular mechanisms and regulatory processes determining intra- and transcellular cholesterol transport in the mammary gland. Cholesterol exchanges between the blood, the mammary alveolar cells and the milk, and the likely role of active cholesterol transporters in these processes are discussed. In this context, the hormonal regulation and signal transduction pathways promoting active cholesterol transport as well as potential regulatory crosstalks are highlighted

    The Placenta-A New Source of Bile Acids during Healthy Pregnancy? First Results of a Gene Expression Study in Humans and Mice.

    Get PDF
    Bile acids (BAs) are natural ligands for several receptors modulating cell activities. BAs are synthesized via the classic (neutral) and alternative (acidic) pathways. The classic pathway is initiated by CYP7A1/Cyp7a1, converting cholesterol to 7α-hydroxycholesterol, while the alternative pathway starts with hydroxylation of the cholesterol side chain, producing an oxysterol. In addition to originating from the liver, BAs are reported to be synthesized in the brain. We aimed at determining if the placenta potentially represents an extrahepatic source of BAs. Therefore, the mRNAs coding for selected enzymes involved in the hepatic BA synthesis machinery were screened in human term and CD1 mouse late gestation placentas from healthy pregnancies. Additionally, data from murine placenta and brain tissue were compared to determine whether the BA synthetic machinery is comparable in these organs. We found that CYP7A1, CYP46A1, and BAAT mRNAs are lacking in the human placenta, while corresponding homologs were detected in the murine placenta. Conversely, Cyp8b1 and Hsd17b1 mRNAs were undetected in the murine placenta, but these enzymes were found in the human placenta. CYP39A1/Cyp39a1 and cholesterol 25-hydroxylase (CH25H/Ch25h) mRNA expression were detected in the placentas of both species. When comparing murine placentas and brains, Cyp8b1 and Hsd17b1 mRNAs were only detected in the brain. We conclude that BA synthesis-related genes are placentally expressed in a species-specific manner. The potential placentally synthesized BAs could serve as endocrine and autocrine stimuli, which may play a role in fetoplacental growth and adaptation

    Effects of aldosterone on the human placenta: Insights from placental perfusion studies.

    Get PDF
    INTRODUCTION In pregnancy, aldosterone is linked to maternal plasma volume expansion, improved fetal and placental growth/angiogenesis and reduced maternal blood pressure. Aldosterone levels are low in women with pre-eclampsia. Given the placental growth properties of aldosterone in pregnancy, we hypothesised that increased aldosterone improves placental function ex vivo. We applied aldosterone in the dual human placenta perfusion model and analysed specific regulatory markers. METHODS A single cotyledon was perfused using a trimodal perfusion setup consisting of a control phase (CP; basic perfusion medium (BPM) alone) and two consecutive experimental phases (EP1/EP2; BPM supplemented with 1.5 x 10-9M and 1.5 x 10-7M aldosterone, respectively). CP and EP1/EP2 were conducted in closed circuits lasting 2 h each. Quality/time control perfusions using BPM alone were performed for 360 min to distinguish time-dependent effects from aldosterone-related effects. Perfusates were assessed for control parameters (pH/pO2/pCO2/glucose/lactate/creatinine/antipyrine). Maternal perfusates were analysed for placental growth factor (PlGF), soluble fms-like tyrosine kinase-1 (sFlt-1), interleukin-10 (IL-10) and tumour necrosis factor-alpha (TNF-α) using ELISAs. mRNA expression of abovementioned factors was measured by qPCR in post-perfusion tissue. RESULTS Data from quality/time control perfusions indicated that TNF-α and IL-10 release continuously increased over time. Contrary, in the trimodal perfusion setup the application of aldosterone decreased TNF-α secretion (P < 0.05, EP1/EP2 vs CP, 120 min) and increased PlGF release (P < 0.05, EP1 vs CP, 90/120 min) into the maternal perfusates. mRNA expression followed similar trends, but did not reach significance. DISCUSSION Our ex vivo placental perfusion data suggest that increasing aldosterone promotes anti-inflammatory and pro-angiogenic factors, which could positively contribute to healthy pregnancy outcomes

    Identification of placental nutrient transporters associated with intrauterine growth restriction and pre-eclampsia.

    Get PDF
    Gestational disorders such as intrauterine growth restriction (IUGR) and pre-eclampsia (PE) are main causes of poor perinatal outcomes worldwide. Both diseases are related with impaired materno-fetal nutrient transfer, but the crucial transport mechanisms underlying IUGR and PE are not fully elucidated. In this study, we aimed to identify membrane transporters highly associated with transplacental nutrient deficiencies in IUGR/PE. In silico analyses on the identification of differentially expressed nutrient transporters were conducted using seven eligible microarray datasets (from Gene Expression Omnibus), encompassing control and IUGR/PE placental samples. Thereby 46 out of 434 genes were identified as potentially interesting targets. They are involved in the fetal provision with amino acids, carbohydrates, lipids, vitamins and microelements. Targets of interest were clustered into a substrate-specific interaction network by using Search Tool for the Retrieval of Interacting Genes. The subsequent wet-lab validation was performed using quantitative RT-PCR on placentas from clinically well-characterized IUGR/PE patients (IUGR, n = 8; PE, n = 5; PE+IUGR, n = 10) and controls (term, n = 13; preterm, n = 7), followed by 2D-hierarchical heatmap generation. Statistical evaluation using Kruskal-Wallis tests was then applied to detect significantly different expression patterns, while scatter plot analysis indicated which transporters were predominantly influenced by IUGR or PE, or equally affected by both diseases. Identified by both methods, three overlapping targets, SLC7A7, SLC38A5 (amino acid transporters), and ABCA1 (cholesterol transporter), were further investigated at the protein level by western blotting. Protein analyses in total placental tissue lysates and membrane fractions isolated from disease and control placentas indicated an altered functional activity of those three nutrient transporters in IUGR/PE. Combining bioinformatic analysis, molecular biological experiments and mathematical diagramming, this study has demonstrated systematic alterations of nutrient transporter expressions in IUGR/PE. Among 46 initially targeted transporters, three significantly regulated genes were further investigated based on the severity and the disease specificity for IUGR and PE. Confirmed by mRNA and protein expression, the amino acid transporters SLC7A7 and SLC38A5 showed marked differences between controls and IUGR/PE and were regulated by both diseases. In contrast, ABCA1 may play an exclusive role in the development of PE

    Cholesterol Transport and Regulation in the Mammary Gland.

    No full text
    The milk-producing alveolar epithelial cells secrete milk that remains after birth the principal source of nutrients for neonates. Milk secretion and composition are highly regulated processes via integrated actions of hormones and local factors which involve specific receptors and downstream signal transduction pathways. Overall milk composition is similar among mammalian species, although the content of individual constituents such as lipids may significantly differ from one species to another. The milk lipid fraction is essentially composed of triglycerides, which represent more than 95 % of the total lipids in human and commercialized bovine milk. Though sterols, including cholesterol, which is the major milk sterol, represent less than 0.5 % of the total milk lipid fraction, they are of key importance for several biological processes. Cholesterol is required for the formation of biological membranes especially in rapidly growing organisms, and for the synthesis of sterol-based compounds. Cholesterol found in milk originates predominantly from blood uptake and, to a certain extent, from local synthesis in the mammary tissue. The present review summarizes current knowledge on cellular mechanisms and regulatory processes determining intra- and transcellular cholesterol transport in the mammary gland. Cholesterol exchanges between the blood, the mammary alveolar cells and the milk, and the likely role of active cholesterol transporters in these processes are discussed. In this context, the hormonal regulation and signal transduction pathways promoting active cholesterol transport as well as potential regulatory crosstalks are highlighted

    Placental Expression of Bile Acid Transporters in Intrahepatic Cholestasis of Pregnancy.

    Get PDF
    Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-related condition characterized by increased maternal circulating bile acids (BAs) having adverse fetal effects. We investigated whether the human placenta expresses specific regulation patterns to prevent fetal exposition to harmful amounts of BAs during ICP. Using real-time quantitative PCR, we screened placentae from healthy pregnancies (n = 12) and corresponding trophoblast cells (n = 3) for the expression of 21 solute carriers and ATP-binding cassette transporter proteins, all acknowledged as BA- and/or cholestasis-related genes. The placental gene expression pattern was compared between healthy women and ICP patients (n = 12 each). Placental SLCO3A1 (OATP3A1) gene expression was significantly altered in ICP compared with controls. The other 20 genes, including SLC10A2 (ASBT) and EPHX1 (EPOX, mEH) reported for the first time in trophoblasts, were comparably abundant in healthy and ICP placentae. ABCG5 was undetectable in all placentae. Placental SLC10A2 (ASBT), SLCO4A1 (OATP4A1), and ABCC2 mRNA levels were positively correlated with BA concentrations in ICP. Placental SLC10A2 (ASBT) mRNA was also correlated with maternal body mass index. We conclude that at the transcriptional level only a limited response of BA transport systems is found under ICP conditions. However, the extent of the transcriptional response may also depend on the severity of the ICP condition and the magnitude by which the maternal BA levels are increased

    Cholesterol transporters in lactating and nonlactating human mammary tissue

    Get PDF
    In mammals milk is the principal nutrient for neonates at birth. The basic milk composition is similar between different mammals, but the content of individual constituents such as lipids may differ significantly from one species to another. The milk fat fraction is mainly composed of triglycerides which account for more than 95% of the lipids found in human and bovine milk. Though sterols and in particular cholesterol, the predominant milk sterol, represent less than 0.5% of the total milk lipid fraction, they are of ultimate importance for biological processes such as the formation of biological membranes or as precursors for steroid hormone synthesis. Cholesterol found in milk originates either from blood uptake or from local synthesis. This chapter provides an overview of cholesterol exchanges between the blood, the mammary tissue and the milk. The current knowledge on the expression, localization and function of candidate cholesterol transporters in mammary tissues of human, murine and bovine origin is summarized. Different mechanisms of how cholesterol can be transferred via the mammary tissue into milk, and which active cholesterol transporters are likely to play a role in this process will be discussed
    corecore