163 research outputs found

    Gelation of Plasmonic Metal Oxide Nanocrystals by Polymer-Induced Depletion-Attractions

    Full text link
    Gelation of colloidal nanocrystals (NCs) emerged as a strategy to preserve inherent nanoscale properties in multiscale architectures. Yet available gelation methods still struggle to reliably control nanoscale optical phenomena such as photoluminescence and localized surface plasmon resonance (LSPR) across NC systems due to processing variability. Here, we report on an alternative gelation method based on physical inter-NC interactions: short-range depletion-attractions balanced by long-range electrostatic repulsions. The latter are established by removing the native organic ligands that passivate tin-doped indium oxide (ITO) NCs while the former are introduced by mixing with small polyethylene glycol (PEG) chains. As we incorporate increasing concentrations of PEG, we observe a reentrant phase behavior featuring two favorable gelation windows; the first arises from bridging effects while the second is attributed to depletion-attractions according to phase behavior predicted by our unified theoretical model. The NCs remain discrete within the gel network, based on X-ray scattering and high-resolution transmission electron microscopy. The infrared optical response of the gel is reflective of both the NC building blocks and the network architecture, being characteristic of ITO NC LSPR with coupling interactions between neighboring NCs

    Universal Gelation of Metal Oxide Nanocrystals via Depletion Attractions

    Get PDF
    Nanocrystal gelation provides a powerful framework to translate nanoscale properties into bulk materials and to engineer emergent properties through the assembled microstructure. However, many established gelation strategies rely on chemical reactions and specific interactions, e.g., stabilizing ligands or ions on the surface of the nanocrystals, and are therefore not easily transferrable. Here, we report a general gelation strategy via non-specific and purely entropic depletion attractions applied to three types of metal oxide nanocrystals. The gelation thresholds of two compositionally distinct spherical nanocrystals agree quantitatively, demonstrating the adaptability of the approach for different chemistries. Consistent with theoretical phase behavior predictions, nanocrystal cubes form gels at a lower polymer concentration than nanocrystal spheres, allowing shape to serve as a handle to control gelation. These results suggest that the fundamental underpinnings of depletion-driven assembly, traditionally associated with larger colloidal particles, are also applicable at the nanoscale

    Representation and misrepresentation of scientific evidence in contemporary tobacco regulation:a review of tobacco industry submissions to the UK Government consultation on standardised packaging

    Get PDF
    BACKGROUND: Standardised packaging (SP) of tobacco products is an innovative tobacco control measure opposed by transnational tobacco companies (TTCs) whose responses to the UK government's public consultation on SP argued that evidence was inadequate to support implementing the measure. The government's initial decision, announced 11 months after the consultation closed, was to wait for 'more evidence', but four months later a second 'independent review' was launched. In view of the centrality of evidence to debates over SP and TTCs' history of denying harms and manufacturing uncertainty about scientific evidence, we analysed their submissions to examine how they used evidence to oppose SP. METHODS AND FINDINGS: We purposively selected and analysed two TTC submissions using a verification-oriented cross-documentary method to ascertain how published studies were used and interpretive analysis with a constructivist grounded theory approach to examine the conceptual significance of TTC critiques. The companies' overall argument was that the SP evidence base was seriously flawed and did not warrant the introduction of SP. However, this argument was underpinned by three complementary techniques that misrepresented the evidence base. First, published studies were repeatedly misquoted, distorting the main messages. Second, 'mimicked scientific critique' was used to undermine evidence; this form of critique insisted on methodological perfection, rejected methodological pluralism, adopted a litigation (not scientific) model, and was not rigorous. Third, TTCs engaged in 'evidential landscaping', promoting a parallel evidence base to deflect attention from SP and excluding company-held evidence relevant to SP. The study's sample was limited to sub-sections of two out of four submissions, but leaked industry documents suggest at least one other company used a similar approach. CONCLUSIONS: The TTCs' claim that SP will not lead to public health benefits is largely without foundation. The tools of Better Regulation, particularly stakeholder consultation, provide an opportunity for highly resourced corporations to slow, weaken, or prevent public health policies

    Study of the reaction e^{+}e^{-} -->J/psi\pi^{+}\pi^{-} via initial-state radiation at BaBar

    Get PDF
    We study the process e+eJ/ψπ+πe^+e^-\to J/\psi\pi^{+}\pi^{-} with initial-state-radiation events produced at the PEP-II asymmetric-energy collider. The data were recorded with the BaBar detector at center-of-mass energies 10.58 and 10.54 GeV, and correspond to an integrated luminosity of 454 fb1\mathrm{fb^{-1}}. We investigate the J/ψπ+πJ/\psi \pi^{+}\pi^{-} mass distribution in the region from 3.5 to 5.5 GeV/c2\mathrm{GeV/c^{2}}. Below 3.7 GeV/c2\mathrm{GeV/c^{2}} the ψ(2S)\psi(2S) signal dominates, and above 4 GeV/c2\mathrm{GeV/c^{2}} there is a significant peak due to the Y(4260). A fit to the data in the range 3.74 -- 5.50 GeV/c2\mathrm{GeV/c^{2}} yields a mass value 4244±54244 \pm 5 (stat) ±4 \pm 4 (syst)MeV/c2\mathrm{MeV/c^{2}} and a width value 11415+16114 ^{+16}_{-15} (stat)±7 \pm 7(syst)MeV\mathrm{MeV} for this state. We do not confirm the report from the Belle collaboration of a broad structure at 4.01 GeV/c2\mathrm{GeV/c^{2}}. In addition, we investigate the π+π\pi^{+}\pi^{-} system which results from Y(4260) decay

    The Core and Accessory Genomes of Burkholderia pseudomallei: Implications for Human Melioidosis

    Get PDF
    Natural isolates of Burkholderia pseudomallei (Bp), the causative agent of melioidosis, can exhibit significant ecological flexibility that is likely reflective of a dynamic genome. Using whole-genome Bp microarrays, we examined patterns of gene presence and absence across 94 South East Asian strains isolated from a variety of clinical, environmental, or animal sources. 86% of the Bp K96243 reference genome was common to all the strains representing the Bp “core genome”, comprising genes largely involved in essential functions (eg amino acid metabolism, protein translation). In contrast, 14% of the K96243 genome was variably present across the isolates. This Bp accessory genome encompassed multiple genomic islands (GIs), paralogous genes, and insertions/deletions, including three distinct lipopolysaccharide (LPS)-related gene clusters. Strikingly, strains recovered from cases of human melioidosis clustered on a tree based on accessory gene content, and were significantly more likely to harbor certain GIs compared to animal and environmental isolates. Consistent with the inference that the GIs may contribute to pathogenesis, experimental mutation of BPSS2053, a GI gene, reduced microbial adherence to human epithelial cells. Our results suggest that the Bp accessory genome is likely to play an important role in microbial adaptation and virulence

    Health care utilization among complementary and alternative medicine users in a large military cohort

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Complementary and Alternative Medicine use and how it impacts health care utilization in the United States Military is not well documented. Using data from the Millennium Cohort Study we describe the characteristics of CAM users in a large military population and document their health care needs over a 12-month period. The aim of this study was to determine if CAM users are requiring more physician-based medical services than users of conventional medicine.</p> <p>Methods</p> <p>Inpatient and outpatient medical services were documented over a 12-month period for 44,287 participants from the Millennium Cohort Study. Equal access to medical services was available to anyone needing medical care during this study period. The number and types of medical visits were compared between CAM and non-CAM users. Chi square test and multivariable logistic regression was applied for the analysis.</p> <p>Results</p> <p>Of the 44,287 participants, 39% reported using at least one CAM therapy, and 61% reported not using any CAM therapies. Those individuals reporting CAM use accounted for 45.1% of outpatient care and 44.8% of inpatient care. Individuals reporting one or more health conditions were 15% more likely to report CAM use than non-CAM users and 19% more likely to report CAM use if reporting one or more health symptoms compared to non-CAM users. The unadjusted odds ratio for hospitalizations in CAM users compared to non-CAM users was 1.29 (95% CI: 1.16-1.43). The mean number of days receiving outpatient care for CAM users was 7.0 days and 5.9 days for non-CAM users (<it>p </it>< 0.001).</p> <p>Conclusions</p> <p>Our study found those who report CAM use were requiring more physician-based medical services than users of conventional medicine. This appears to be primarily the result of an increase in the number of health conditions and symptoms reported by CAM users.</p

    Very High Energy Observations of Gamma-Ray Burst Locations with the Whipple Telescope

    Get PDF
    Gamma-ray burst (GRB) observations at very high energies (VHE, E > 100 GeV) can impose tight constraints on some GRB emission models. Many GRB afterglow models predict a VHE component similar to that seen in blazars and plerions, in which the GRB spectral energy distribution has a double-peaked shape extending into the VHE regime. VHE emission coincident with delayed X-ray flare emission has also been predicted. GRB follow-up observations have had high priority in the observing program at the Whipple 10m Gamma-ray Telescope and GRBs will continue to be high priority targets as the next generation observatory, VERITAS, comes on-line. Upper limits on the VHE emission, at late times (>~4 hours), from seven GRBs observed with the Whipple Telescope are reported here.Comment: Accepted for publication in the January 20, 2007 volume of the Astrophysical Journal, 655, 39

    A Small-Molecule Inhibitor of T. gondii Motility Induces the Posttranslational Modification of Myosin Light Chain-1 and Inhibits Myosin Motor Activity

    Get PDF
    Toxoplasma gondii is an obligate intracellular parasite that enters cells by a process of active penetration. Host cell penetration and parasite motility are driven by a myosin motor complex consisting of four known proteins: TgMyoA, an unconventional Class XIV myosin; TgMLC1, a myosin light chain; and two membrane-associated proteins, TgGAP45 and TgGAP50. Little is known about how the activity of the myosin motor complex is regulated. Here, we show that treatment of parasites with a recently identified small-molecule inhibitor of invasion and motility results in a rapid and irreversible change in the electrophoretic mobility of TgMLC1. While the precise nature of the TgMLC1 modification has not yet been established, it was mapped to the peptide Val46-Arg59. To determine if the TgMLC1 modification is responsible for the motility defect observed in parasites after compound treatment, the activity of myosin motor complexes from control and compound-treated parasites was compared in an in vitro motility assay. TgMyoA motor complexes containing the modified TgMLC1 showed significantly decreased motor activity compared to control complexes. This change in motor activity likely accounts for the motility defects seen in the parasites after compound treatment and provides the first evidence, in any species, that the mechanical activity of Class XIV myosins can be modulated by posttranslational modifications to their associated light chains

    Comparability of Results from Pair and Classical Model Formulations for Different Sexually Transmitted Infections

    Get PDF
    The “classical model” for sexually transmitted infections treats partnerships as instantaneous events summarized by partner change rates, while individual-based and pair models explicitly account for time within partnerships and gaps between partnerships. We compared predictions from the classical and pair models over a range of partnership and gap combinations. While the former predicted similar or marginally higher prevalence at the shortest partnership lengths, the latter predicted self-sustaining transmission for gonorrhoea (GC) and Chlamydia (CT) over much broader partnership and gap combinations. Predictions on the critical level of condom use (Cc) required to prevent transmission also differed substantially when using the same parameters. When calibrated to give the same disease prevalence as the pair model by adjusting the infectious duration for GC and CT, and by adjusting transmission probabilities for HIV, the classical model then predicted much higher Cc values for GC and CT, while Cc predictions for HIV were fairly close. In conclusion, the two approaches give different predictions over potentially important combinations of partnership and gap lengths. Assuming that it is more correct to explicitly model partnerships and gaps, then pair or individual-based models may be needed for GC and CT since model calibration does not resolve the differences
    corecore