99 research outputs found

    How to process sea ice for chlorophyll-based photosynthesis measurement of the ice algae?

    Get PDF
    The Tenth Symposium on Polar Science/Ordinary sessions: [OB] Polar Biology, Wed. 4 Dec. / 3F Multipurpose conference room, National Institute of Polar Researc

    Impact of Increased Nutrients and Lowered pH on Photosynthesis and Growth of Three Marine Phytoplankton Communities From the Coastal South West Atlantic (Patagonia, Argentina)

    Get PDF
    Effect of global change variables on the structure and photosynthesis of phytoplankton communities was evaluated in three different sites of the Patagonian coast of Argentina: enclosed bay (Puerto Madryn, PM), estuarine (Playa Unión, PU), and open waters (Isla Escondida, IE). We exposed samples to two contrasting scenarios: Present (nutrients at in situ levels) vs. Future (with lowered pH and higher nutrients inputs), and determined growth and photosynthetic responses after 2 days of acclimation. Under the Future condition phytoplankton growth was higher in the estuarine site compared to those in PM and IE. This effect was the most pronounced on large diatoms. While the increase of photosynthetic activity was not always observed in the Future scenario, the lower photosynthetic electron requirement for carbon fixation (Φe,C = ETR/PmB) in this scenario compared to the Present, suggests a more effective energy utilization. Long-term experiments were also conducted to assess the responses along a 4 days acclimation period in PU. Diatoms benefited from the Future conditions and had significantly higher growth rates than in the Present. In addition, Φe,C was lower after the acclimation period in the Future scenario, compared to the Present. Our results suggest that the availability, frequency and amount of nutrients play a key role when evaluating the effects of global change on natural phytoplankton communities. The observed changes in diatom growth under the Future scenario in PU and IE and photosynthesis may have implications in the local trophodynamics by bottom up control

    Community dynamics and function of algae and bacteria during winter in central European great lakes

    Get PDF
    Abundant phytoplankton and bacteria were identified by microscopy and high-throughput 16S rRNA tag Illumina sequencing of samples from water- and ice phases collected during winter at two central European Great Lakes, Balaton and Fertő (Neusiedlersee). Bacterial reads at all sites were dominated (\u3e85%) by Bacteroidetes and Proteobacteria. Amongst phototrophs, microscopy and 16S sequencing revealed that both phytoplankton and cyanobacteria were represented, with a median of 1500 cyanobacterial sequence reads amongst 13 samples analyzed. The sequence analysis compared replicate Balaton and Fertő ice and water samples with an outgroup from three Hungarian soda lakes. In particular, both water and ice from Fertő contained high contributions from cyanobacteria. Two percent of total reads identified to the level of family in water at Fertő were dominated by a single operational taxonomic unit (OTU) of a cyanobacterium within the Rivulariaceae, which was largely absent from ice. Conversely, ice samples from both lakes yielded an abundant OTU assigned to a Flavobacterium sp. known to be associated with freshwater ice. Principal Coordinates Analysis (PCoA) revealed that the ice communities from all sites were similar to one another, and that the water communities did not cluster together. Fluorescence emission spectra obtained at 77 K confirmed the presence of intact cyanobacteria in Fertő water and ice. Photosynthetic characterization of phototrophs resident in water and ice analyzed by assay of acid-stable photosynthetic H14CO3– incorporation showed that communities from both phases were photosynthetically active, thus adding to growing recognition of ice-covered lakes as viable habitat for phototrophs

    Photosynthesis in Chromera velia Represents a Simple System with High Efficiency

    Get PDF
    Chromera velia (Alveolata) is a close relative to apicomplexan parasites with a functional photosynthetic plastid. Even though C. velia has a primitive complement of pigments (lacks chlorophyll c) and uses an ancient type II form of RuBISCO, we found that its photosynthesis is very efficient with the ability to acclimate to a wide range of irradiances. C. velia maintain similar maximal photosynthetic rates when grown under continual light-limited (low light) or light-saturated (high light) conditions. This flexible acclimation to continuous light is provided by an increase of the chlorophyll content and photosystem II connectivity under light limited conditions and by an increase in the content of protective carotenoids together with stimulation of effective non-photochemical quenching under high light. C. velia is able to significantly increase photosynthetic rates when grown under a light-dark cycle with sinusoidal changes in light intensity. Photosynthetic activities were nonlinearly related to light intensity, with maximum performance measured at mid-morning. C. velia efficiently acclimates to changing irradiance by stimulation of photorespiration and non-photochemical quenching, thus avoiding any measurable photoinhibition. We suggest that the very high CO(2) assimilation rates under sinusoidal light regime are allowed by activation of the oxygen consuming process (possibly chlororespiration) that maintains high efficiency of RuBISCO (type II). Despite the overall simplicity of the C. velia photosynthetic system, it operates with great efficiency

    Combined Effects of CO 2

    Full text link

    Electron & Biomass Dynamics of Cyanothece Under Interacting Nitrogen & Carbon Limitations

    Get PDF
    Marine diazotrophs are a diverse group with key roles in biogeochemical fluxes linked to primary productivity. The unicellular, diazotrophic cyanobacterium Cyanothece is widely found in coastal, subtropical oceans. We analyze the consequences of diazotrophy on growth efficiency, compared to NO3–-supported growth in Cyanothece, to understand how cells cope with N2-fixation when they also have to face carbon limitation, which may transiently affect populations in coastal environments or during blooms of phytoplankton communities. When grown in obligate diazotrophy, cells face the double burden of a more ATP-demanding N-acquisition mode and additional metabolic losses imposed by the transient storage of reducing potential as carbohydrate, compared to a hypothetical N2 assimilation directly driven by photosynthetic electron transport. Further, this energetic burden imposed by N2-fixation could not be alleviated, despite the high irradiance level within the cultures, because photosynthesis was limited by the availability of dissolved inorganic carbon (DIC), and possibly by a constrained capacity for carbon storage. DIC limitation exacerbates the costs on growth imposed by nitrogen fixation. Therefore, the competitive efficiency of diazotrophs could be hindered in areas with insufficient renewal of dissolved gases and/or with intense phytoplankton biomass that both decrease available light energy and draw the DIC level down

    Non-Photochemical Quenching in Cryptophyte Alga Rhodomonas salina Is Located in Chlorophyll a/c Antennae

    Get PDF
    Photosynthesis uses light as a source of energy but its excess can result in production of harmful oxygen radicals. To avoid any resulting damage, phototrophic organisms can employ a process known as non-photochemical quenching (NPQ), where excess light energy is safely dissipated as heat. The mechanism(s) of NPQ vary among different phototrophs. Here, we describe a new type of NPQ in the organism Rhodomonas salina, an alga belonging to the cryptophytes, part of the chromalveolate supergroup. Cryptophytes are exceptional among photosynthetic chromalveolates as they use both chlorophyll a/c proteins and phycobiliproteins for light harvesting. All our data demonstrates that NPQ in cryptophytes differs significantly from other chromalveolates – e.g. diatoms and it is also unique in comparison to NPQ in green algae and in higher plants: (1) there is no light induced xanthophyll cycle; (2) NPQ resembles the fast and flexible energetic quenching (qE) of higher plants, including its fast recovery; (3) a direct antennae protonation is involved in NPQ, similar to that found in higher plants. Further, fluorescence spectroscopy and biochemical characterization of isolated photosynthetic complexes suggest that NPQ in R. salina occurs in the chlorophyll a/c antennae but not in phycobiliproteins. All these results demonstrate that NPQ in cryptophytes represents a novel class of effective and flexible non-photochemical quenching

    Single-Turnover Variable Chlorophyll Fluorescence as a Tool for Assessing Phytoplankton Photosynthesis and Primary Productivity: Opportunities, Caveats and Recommendations

    Get PDF
    Phytoplankton photosynthetic physiology can be investigated through single-turnover variable chlorophyll fluorescence (ST-ChlF) approaches, which carry unique potential to autonomously collect data at high spatial and temporal resolution. Over the past decades, significant progress has been made in the development and application of ST-ChlF methods in aquatic ecosystems, and in the interpretation of the resulting observations. At the same time, however, an increasing number of sensor types, sampling protocols, and data processing algorithms have created confusion and uncertainty among potential users, with a growing divergence of practice among different research groups. In this review, we assist the existing and upcoming user community by providing an overview of current approaches and consensus recommendations for the use of ST-ChlF measurements to examine in-situ phytoplankton productivity and photo-physiology. We argue that a consistency of practice and adherence to basic operational and quality control standards is critical to ensuring data inter-comparability. Large datasets of inter-comparable and globally coherent ST-ChlF observations hold the potential to reveal large-scale patterns and trends in phytoplankton photo-physiology, photosynthetic rates and bottom-up controls on primary productivity. As such, they hold great potential to provide invaluable physiological observations on the scales relevant for the development and validation of ecosystem models and remote sensing algorithms

    Predicting the Electron Requirement for Carbon Fixation in Seas and Oceans

    Get PDF
    Marine phytoplankton account for about 50% of all global net primary productivity (NPP). Active fluorometry, mainly Fast Repetition Rate fluorometry (FRRf), has been advocated as means of providing high resolution estimates of NPP. However, not measuring CO2-fixation directly, FRRf instead provides photosynthetic quantum efficiency estimates from which electron transfer rates (ETR) and ultimately CO2-fixation rates can be derived. Consequently, conversions of ETRs to CO2-fixation requires knowledge of the electron requirement for carbon fixation (Φe,C, ETR/CO2 uptake rate) and its dependence on environmental gradients. Such knowledge is critical for large scale implementation of active fluorescence to better characterise CO2-uptake. Here we examine the variability of experimentally determined Φe,C values in relation to key environmental variables with the aim of developing new working algorithms for the calculation of Φe,C from environmental variables. Coincident FRRf and 14C-uptake and environmental data from 14 studies covering 12 marine regions were analysed via a meta-analytical, non-parametric, multivariate approach. Combining all studies, Φe,C varied between 1.15 and 54.2 mol e- (mol C)-1 with a mean of 10.9±6.91 mol e- mol C)-1. Although variability of Φe,C was related to environmental gradients at global scales, region-specific analyses provided far improved predictive capability. However, use of regional Φe,C algorithms requires objective means of defining regions of interest, which remains challenging. Considering individual studies and specific small-scale regions, temperature, nutrient and light availability were correlated with Φe,C albeit to varying degrees and depending on the study/region and the composition of the extant phytoplankton community. At the level of large biogeographic regions and distinct water masses, Φe,C was related to nutrient availability, chlorophyll, as well as temperature and/or salinity in most regions, while light availability was also important in Baltic Sea and shelf waters. The novel Φe,C algorithms provide a major step forward for widespread fluorometry-based NPP estimates and highlight the need for further studying the natural variability of Φe,C to verify and develop algorithms with improved accuracy. © 2013 Lawrenz et al

    Artistic features of small town in a work of J. Š. Kubín

    No full text
    Těžištěm bakalářské práce je dílo Josefa Štefana Kubína. Především pentalogie autorských povídek z prostředí maloměsta Jivínské rapsódie. Povídky Kubín napsal ve čtyřicátých letech dvacátého století, ale týkají se doby jeho mládí, tedy druhé poloviny devatenáctého století. Pro pochopení vzniku povídek obsahuje práce rozsáhlejší životopisnou část. Jednotlivé analýzy mají jako hlavní funkci představit samostatné povídky jako logickou součást jednoho velkého pětisvazkového celku. Kapitoly tvoří celek na pozadí dobové reality, autorovy zkušenosti a jeho vlastní umělecké prezentace. Důležitou součástí práce je odhalení skutečného prostoru krajiny, ve které se odehrávají fiktivní příběhy.The emphasis of this bachelor work lies in work of Josef Štefan Kubín. Above all in the pentalogy of author tales from neigbourhood of a provincial town called "Jivínské rapsódie". The tales were written by Kubín in the fourties of 20th century, but they are related to author's youth, i.e. second half of the 19th century. For better comprehension of the tales, the thesis contains a more extensive biographical section. Main feature of every analysis is to introduce one of the tales as a logical part of one piece consisting of five fascicles. The chapters compose one piece at the background of contemporary reality, author's experience and his own artistic presentation. Vital part of the work treats the revelation of a real landscape where the fictional stories take place.Katedra historických vědDokončená práce s úspěšnou obhajobo
    corecore