32 research outputs found

    Reducing greenhouse energy consumption using novelty rooftop: a simulation

    Get PDF
    Recently, more than 80% of total energy of commercial greenhouse in the northern hemisphere is used just for heating. Mostly, the energy loss happens up to 40% caused by the poor U-value of the façades. Therefore, by lowering the U-value would decrease the energy consumption significantly. This simulation is conducted using EnergyPlus software to calculate the heat loss, heating demand and daylighting of a greenhouse with different envelope materials especially novelty rooftop. The orientation of buildings and its effect to electricity generated by semi-transparent PV double glazing are also discussed. In addition, the effect of the novel rooftop to daylighting inside the greenhouse is also investigated. The simulation shows that use materials with low U-value and novel rooftop could decrease the source energy consumption by 65% which is remarkable compared to commercial greenhouse. Besides, the best orientation for the PV module of the greenhouse in Nottingham, UK is facing west-south-east. While the indoor daylighting factor declined up to 65%. Therefore, using PVs with high efficiency would diminish the electricity losses and could be used for lighting energy alternative and others

    Recent passive technologies of greenhouse systems: a review

    Get PDF
    There are 130 countries produces greenhouse vegetables commercially with more than 1.1 million acres in 2016. Most of the greenhouses deal with high operating costs due to the great energy needs. The high heat loss because of the greenhouse envelope material is responsible for the high energy demand in greenhouses. Nevertheless, each area having a specific need which affects to the energy level and conventional greenhouse technologies tend to have poor U-values. It causes energy for heating is very dominant up to 85% of the total greenhouse energy demand in cold climates countries. While, for the hot climate countries the energy for cooling is more prevalent. Therefore, this paper presents the latest technological developments used in greenhouses in various countries used to control the microclimate in the greenhouse focusing on passive techniques. It is found that PCM recently used to provide heating and cooling for Mediterranean climate. Moreover, closed greenhouse concept based system for Northern climatic improves the reduction energy demands by 80% with a potential payback of 6 years. Additionally, for most countries double glazing envelopes to be the most frequently powerful to increase the greenhouse performance

    The microencapsulation, thermal enhancement, and applications of medium and high-melting temperature phase change materials: A review

    Get PDF
    Microencapsulated phase change materials (MEPCMs) have made tremendous advancements in recent years, owing to their increased demand for a variety of energy storage applications. In this paper, current microencapsulation techniques, enhancement, and use of medium- and high-melting phase change materials (PCMs) are reviewed, as well as their potential benefits and limitations. The most frequently employed PCMs for medium- and high-temperature applications were recognized as salt-based, metallic, inorganic compound, and eutectic. Meanwhile, polymethyl methacrylate (PMMA), polystyrene-butylacrylate (PSBA), polyethyl-2-cyanoacrylate (PECA), and polyurethane were widely used as polymer shell materials for encapsulating medium- and high-melting point PCMs via chemical method, whereas inorganic silica shell was synthesized via various techniques. Hydrolysis followed by heat-oxidation treatment has been extensively studied since 2015 to encapsulate either metal or alloy within Al2O3 shells. Different techniques were developed to generate void between core and shell material to accommodate volume expansion during phase transition. Numerous approaches, including the incorporation of metal particles, carbon, and ceramic, have been found as ways to enhance the thermal performance of PCMs. Multiple storage arrangements were also established to be an effective way of enhancing the overall efficiency of medium-high melting PCM storage systems. Finally, the paper highlights the potential of medium- and high-melting temperature PCMs for solar power generation, solar cooking, and industrial waste heat recovering applications

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
    corecore