270 research outputs found

    Twisted mass transport enabled by the angular momentum of light

    Get PDF
    The authors acknowledge support in the form of KAKENHI Grants-in-Aid (Grant Nos. JP 16H06507, JP 17K19070, and JP 18H03884) from the Japan Society for the Promotion of Science (JSPS), Japan Science and Technology Agency (JST) CREST Grant No. (JPMJCR1903), and the U.S. National Science Foundation Award #1809518. KD and YA thank the UK Engineering and Physical Sciences Research Council for funding (through Grant No. EP/P030017/1).Light may carry both orbital angular momentum (AM) and spin AM. The former is a consequence of its helical wavefront, and the latter is a result of its rotating transverse electric field. Intriguingly, the light–matter interaction with such fields shows that the orbital AM of light causes a physical “twist” in a range of materials, including metal, silicon, azopolymer, and even liquid-phase resin. This process may be aided by the light’s spin AM, resulting in the formation of various helical structures. The exchange between the AM of light and matter offers not only unique helical structures at the nanoscale but also entirely novel fundamental phenomena with regard to the light–matter interaction. This will lead to the future development of advanced photonics devices, including metamaterials for highly sensitive detectors as well as reactions for chiral chemical composites. Here, we focus on interactions between the AM of light and azopolymers, which exhibit some of the most diverse structures and phenomena observed. These studies result in helical surface relief structures in azopolymers and will leverage next-generation applications with light fields carrying optical AM.Publisher PDFPeer reviewe

    The CD8+ Dendritic Cell Subset Selectively Endocytoses Dying Cells in Culture and In Vivo

    Get PDF
    Dendritic cells (DCs) are able in tissue culture to phagocytose and present antigens derived from infected, malignant, and allogeneic cells. Here we show directly that DCs in situ take up these types of cells after fluorescent labeling with carboxyfluorescein succinimidyl ester (CFSE) and injection into mice. The injected cells include syngeneic splenocytes and tumor cell lines, induced to undergo apoptosis ex vivo by exposure to osmotic shock, and allogeneic B cells killed by NK cells in situ. The CFSE-labeled cells in each case are actively endocytosed by DCs in vivo, but only the CD8+ subset. After uptake, all of the phagocytic CD8+ DCs can form major histocompatibility complex class II–peptide complexes, as detected with a monoclonal antibody specific for these complexes. The CD8+ DCs also selectively present cell-associated antigens to both CD4+ and CD8+ T cells. Similar events take place with cultured DCs; CD8+ DCs again selectively take up and present dying cells. In contrast, both CD8+ and CD8− DCs phagocytose latex particles in culture, and both DC subsets present soluble ovalbumin captured in vivo. Therefore CD8+ DCs are specialized to capture dying cells, and this helps to explain their selective ability to cross present cellular antigens to both CD4+ and CD8+ T cells

    Gliadin induces neutrophil migration via engagement of the formyl peptide receptor, FPR1

    Get PDF
    Background Gliadin, the immunogenic component within gluten and trigger of celiac disease, is known to induce the production of Interleukin-8, a potent neutrophil-Activating and chemoattractant chemokine.We sought to study the involvement of neutrophils in the early immunological changes following gliadin exposure. Methods Utilizing immunofluorescence microscopy and flow cytometry, the redistribution of major tight junction protein, Zonula occludens (ZO)-1, and neutrophil recruitment were assessed in duodenal tissues of gliadin-gavaged C57BL/6 wild-Type and Lys-GFP reporter mice, respectively. Intravital microscopy with Lys-GFP mice allowed monitoring of neutrophil recruitment in response to luminal gliadin exposure in real time. In vitro chemotaxis assays were used to study murine and human neutrophil chemotaxis to gliadin, synthetic alpha-gliadin peptides and the neutrophil chemoattractant, fMet-Leu-Phe, in the presence or absence of a specific inhibitor of the fMet-Leu-Phe receptor-1 (FPR1), cyclosporine H. An irrelevant protein, zein, served as a control. Results Redistribution of ZO-1 and an influx of CD11b+Lys6G+ cells in the lamina propria of the small intestine were observed upon oral gavage of gliadin. In vivo intravital microscopy revealed a slowing down of GFP+ cells within the vessels and influx in the mucosal tissue within 2 hours after challenge. In vitro chemotaxis assays showed that gliadin strongly induced neutrophil migration, similar to fMet-Leu-Phe.We identified thirteen synthetic gliadin peptide motifs that induced cell migration. Blocking of FPR1 completely abrogated the fMet-Leu-Phe-, gliadin- and synthetic peptide-induced migration. Conclusions Gliadin possesses neutrophil chemoattractant properties similar to the classical neutrophil chemoattractant, fMet-Leu-Phe, and likewise uses FPR1 in the process. Copyright

    The enhanced expression of the matrix metalloproteinase 9 in nasal NK/T-cell lymphoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nasal NK/T cell lymphoma is an aggressive disease and has a poor prognosis. Nasal NK/T cell lymphoma is refractory to conventional chemotherapy and has strong tendency of widespread relapse or dissemination into distant sites.</p> <p>Methods</p> <p>We immunohistochemically studied nasal NK/T-cell lymphoma to elucidate the unique characteristics of nasal NK/T-cell lymphoma, such as its higher metastatic tendency and its vast necrosis which leads to destruction of the involved tissues. The expression of P-glycoprotein and MMP-9 was evaluated in the 20 patients with nasal NK/T-cell lymphoma and 25 with nasal non-NK/T-cell lymphoma and the relationship between expression of these proteins and clinical results were analyzed in this report.</p> <p>Results</p> <p>Overall 5-year survival rates for patients with nasal NK/T cell lymphoma, and nasal non-NK/T cell lymphoma were 51%, and 84%. Distant involvement free 5-year survival rates for patients with nasal NK/T cell lymphoma, and nasal non-NK/T cell lymphoma were 53%, and 79%.</p> <p>Overall positivity for P-glycoprotein was observed in 10 of 19 patients with NTL and in 13 of 23 patients with non-NTL. When the overall survival rate was compared between patients with P-glycoprotein positive and negative, there was no difference between them.</p> <p>Sixteen of the 19 patients with nasal NK/T cell lymphoma expressed MMP-9. In contrast, only 8 of the 22 patients with nasal non-NK/T cell lymphoma expressed MMP-9. Distant involvement free 5-year survival rates for patients with MMP-9 negative, and MMP-9 positive were 92%, and 61%, respectively. The difference was statistically significant (p = 0.027).</p> <p>Conclusion</p> <p>Positive immunoreactivity for P-glycoprotein was not an independent prognostic factor in nasal NK/T-cell lymphomas, which stresses the importance of exploring other mechanisms of drug resistance. The strong expression of MMP-9 is uniquely characteristic of nasal NK/T cell lymphoma and may contribute to its strong tendency to disseminatate and the extensive necrosis which is always seen. However, our results are based on univariate comparisons, and as such, should be viewed with some caution.</p

    Interferon Production and Signaling Pathways Are Antagonized during Henipavirus Infection of Fruit Bat Cell Lines

    Get PDF
    Bats are natural reservoirs for a spectrum of infectious zoonotic diseases including the recently emerged henipaviruses (Hendra and Nipah viruses). Henipaviruses have been observed both naturally and experimentally to cause serious and often fatal disease in many different mammal species, including humans. Interestingly, infection of the flying fox with henipaviruses occurs in the absence of clinical disease. The extreme variation in the disease pattern between humans and bats has led to an investigation into the effects of henipavirus infection on the innate immune response in bat cell lines. We report that henipavirus infection does not result in the induction of interferon expression, and the viruses also inhibit interferon signaling. We also confirm that the interferon production and signaling block in bat cells is not due to differing viral protein expression levels between human and bat hosts. This information, in addition to the known lack of clinical signs in bats following henipavirus infection, suggests that bats control henipavirus infection by an as yet unidentified mechanism, not via the interferon response. This is the first report of henipavirus infection in bat cells specifically investigating aspects of the innate immune system

    P2Y2 and P2Y6 receptor activation elicits intracellular calcium responses in human adipose-derived mesenchymal stromal cells

    Get PDF
    Adipose tissue contains self-renewing multipotent cells termed mesenchymal stromal cells. In situ, these cells serve to expand adipose tissue by adipogenesis, but their multipotency has gained interest for use in tissue regeneration. Little is known regarding the repertoire of receptors expressed by adipose-derived mesenchymal stromal cells (AD-MSCs). The purpose of this study was to undertake a comprehensive analysis of purinergic receptor expression. Mesenchymal stromal cells were isolated from human subcutaneous adipose tissue and confirmed by flow cytometry. The expression profile of purinergic receptors was determined by quantitative real-time PCR and immunocytochemistry. The molecular basis for adenine and uracil nucleotide-evoked intracellular calcium responses was determined using Fura-2 measurements. All the known subtypes of P2X and P2Y receptors, excluding P2X2, P2X3 and P2Y12 receptors, were detected at the mRNA and protein level. ATP, ADP and UTP elicited concentration-dependent calcium responses in mesenchymal cells (N = 7–9 donors), with a potency ranking ADP (EC50 1.3 ± 1.0 μM) > ATP (EC50 2.2 ± 1.1 μM) = UTP (3.2 ± 2.8 μM). Cells were unresponsive to UDP (< 30 μM) and UDP-glucose (< 30 μM). ATP responses were attenuated by selective P2Y2 receptor antagonism (AR-C118925XX; IC50 1.1 ± 0.8 μM, 73.0 ± 8.5% max inhibition; N = 7 donors), and UTP responses were abolished. ADP responses were attenuated by the selective P2Y6 receptor antagonist, MRS2587 (IC50 437 ± 133nM, 81.0 ± 8.4% max inhibition; N = 6 donors). These data demonstrate that adenine and uracil nucleotides elicit intracellular calcium responses in human AD-MSCs with a predominant role for P2Y2 and P2Y6 receptor activation. This study furthers understanding about how human adipose-derived mesenchymal stromal cells can respond to external signalling cues

    Wnt4 Enhances Murine Hematopoietic Progenitor Cell Expansion Through a Planar Cell Polarity-Like Pathway

    Get PDF
    Background: While the role of canonical (b-catenin-mediated) Wnt signaling in hematolymphopoiesis has been studied extensively, little is known of the potential importance of non-canonical Wnt signals in hematopoietic cells. Wnt4 is one of the Wnt proteins that can elicit non-canonical pathways. We have previously shown that retroviral overexpression of Wnt4 by hematopoietic cells increased thymic cellularity as well as the frequency of early thymic progenitors and bone marrow hematopoietic progenitor cells (HPCs). However, the molecular pathways responsible for its effect in HPCs are not known. Methodology/Principal Findings: Here we report that Wnt4 stimulation resulted in the activation of the small GTPase Rac1 as well as Jnk kinases in an HPC cell line. Jnk activity was necessary, while b-catenin was dispensable, for the Wnt4-mediated expansion of primary fetal liver HPCs in culture. Furthermore, Jnk2-deficient and Wnt4 hemizygous mice presented lower numbers of HPCs in their bone marrow, and Jnk2-deficient HPCs showed increased rates of apoptosis. Wnt4 also improved HPC activity in a competitive reconstitution model in a cell-autonomous, Jnk2-dependent manner. Lastly, we identified Fz6 as a receptor for Wnt4 in immature HPCs and showed that the absence of Wnt4 led to a decreased expression of four polarity complex genes. Conclusions/Significance: Our results establish a functional role for non-canonical Wnt signaling in hematopoiesis throug

    Depletion of stromal cells expressing fibroblast activation protein-α from skeletal muscle and bone marrow results in cachexia and anemia.

    Get PDF
    Fibroblast activation protein-α (FAP) identifies stromal cells of mesenchymal origin in human cancers and chronic inflammatory lesions. In mouse models of cancer, they have been shown to be immune suppressive, but studies of their occurrence and function in normal tissues have been limited. With a transgenic mouse line permitting the bioluminescent imaging of FAP(+) cells, we find that they reside in most tissues of the adult mouse. FAP(+) cells from three sites, skeletal muscle, adipose tissue, and pancreas, have highly similar transcriptomes, suggesting a shared lineage. FAP(+) cells of skeletal muscle are the major local source of follistatin, and in bone marrow they express Cxcl12 and KitL. Experimental ablation of these cells causes loss of muscle mass and a reduction of B-lymphopoiesis and erythropoiesis, revealing their essential functions in maintaining normal muscle mass and hematopoiesis, respectively. Remarkably, these cells are altered at these sites in transplantable and spontaneous mouse models of cancer-induced cachexia and anemia. Thus, the FAP(+) stromal cell may have roles in two adverse consequences of cancer: their acquisition by tumors may cause failure of immunosurveillance, and their alteration in normal tissues contributes to the paraneoplastic syndromes of cachexia and anemia
    corecore