56 research outputs found

    Scalable, Nanometer-Accurate Fabrication of All-Dielectric Metasurfaces with Narrow Resonances Tunable from Near Infrared to Visible Wavelengths

    Get PDF
    Dielectric metasurfaces are a class of flat-optical elements that provide new ways to manipulate light. Irrespective of the underlying operation principle, the realization of such nanometer-sized structures requires a high fabrication accuracy, e.g., to match resonant conditions. While electron-beam lithography (EBL) achieves feature sizes below 10 nm, transparent substrates, as used for transmission devices, are challenging due to proximity effects. Furthermore, EBL's sequential exposure limits the exposable area, making it unaffordable for applications. Here, a novel fabrication route is described based on a master template created by EBL, which is then replicated by nanoimprint lithography (NIL). A three-layer process enables high-resolution nanoimprint resists with low etching selectivity with respect to semiconductors yet to be used. The resulting structures are highly reproducible and defect-free thanks to the selective removal of residual layers and a master not suffering from proximity effects. Exemplarily, elliptical Mie resonators are fabricated with tunable resonances from the near infrared (NIR) to the visible wavelength regime. They reveal a high uniformity and sensitivity toward dielectric changes. The generic fabrication approach enables upscaling of nanoscale metasurfaces to wafer scales by step-and-repeat techniques and deployment of the optical devices fabricated in real-world applications due to massively reduced costs

    CENP-F stabilizes kinetochore-microtubule attachments and limits dynein stripping of corona cargoes

    Get PDF
    Accurate chromosome segregation demands efficient capture of microtubules by kinetochores and their conversion to stable bioriented attachments that can congress and then segregate chromosomes. An early event is the shedding of the outermost fibrous corona layer of the kinetochore following microtubule attachment. Centromere protein F (CENP-F) is part of the corona, contains two microtubule-binding domains, and physically associates with dynein motor regulators. Here, we have combined CRISPR gene editing and engineered separation-of-function mutants to define how CENP-F contributes to kinetochore function. We show that the two microtubule-binding domains make distinct contributions to attachment stability and force transduction but are dispensable for chromosome congression. We further identify a specialized domain that functions to limit the dynein-mediated stripping of corona cargoes through a direct interaction with Nde1. This antagonistic activity is crucial for maintaining the required corona composition and ensuring efficient kinetochore biorientation

    Tunable quantum dots from atomically precise graphene nanoribbons using a multi-gate architecture

    Get PDF
    Atomically precise graphene nanoribbons (GNRs) are increasingly attracting interest due to their largely modifiable electronic properties, which can be tailored by controlling their width and edge structure during chemical synthesis. In recent years, the exploitation of GNR properties for electronic devices has focused on GNR integration into field-effect-transistor (FET) geometries. However, such FET devices have limited electrostatic tunability due to the presence of a single gate. Here, we report on the device integration of 9-atom wide armchair graphene nanoribbons (9-AGNRs) into a multi-gate FET geometry, consisting of an ultra-narrow finger gate and two side gates. We use high-resolution electron-beam lithography (EBL) for defining finger gates as narrow as 12 nm and combine them with graphene electrodes for contacting the GNRs. Low-temperature transport spectroscopy measurements reveal quantum dot (QD) behavior with rich Coulomb diamond patterns, suggesting that the GNRs form QDs that are connected both in series and in parallel. Moreover, we show that the additional gates enable differential tuning of the QDs in the nanojunction, providing the first step towards multi-gate control of GNR-based multi-dot systems

    Tunable Quantum Dots from Atomically Precise Graphene Nanoribbons Using a Multi‐Gate Architecture

    Get PDF
    Atomically precise graphene nanoribbons (GNRs) are increasingly attracting interest due to their largely modifiable electronic properties, which can be tailored by controlling their width and edge structure during chemical synthesis. In recent years, the exploitation of GNR properties for electronic devices has focused on GNR integration into field-effect-transistor (FET) geometries. However, such FET devices have limited electrostatic tunability due to the presence of a single gate. Here, on the device integration of 9-atom wide armchair graphene nanoribbons (9-AGNRs) into a multi-gate FET geometry, consisting of an ultra-narrow finger gate and two side gates is reported. High-resolution electron-beam lithography (EBL) is used for defining finger gates as narrow as 12 nm and combine them with graphene electrodes for contacting the GNRs. Low-temperature transport spectroscopy measurements reveal quantum dot (QD) behavior with rich Coulomb diamond patterns, suggesting that the GNRs form QDs that are connected both in series and in parallel. Moreover, it is shown that the additional gates enable differential tuning of the QDs in the nanojunction, providing the first step toward multi-gate control of GNR-based multi-dot systems

    Edge Contacts to Atomically Precise Graphene Nanoribbons.

    Get PDF
    Bottom-up-synthesized graphene nanoribbons (GNRs) are an emerging class of designer quantum materials that possess superior properties, including atomically controlled uniformity and chemically tunable electronic properties. GNR-based devices are promising candidates for next-generation electronic, spintronic, and thermoelectric applications. However, due to their extremely small size, making electrical contact with GNRs remains a major challenge. Currently, the most commonly used methods are top metallic electrodes and bottom graphene electrodes, but for both, the contact resistance is expected to scale with overlap area. Here, we develop metallic edge contacts to contact nine-atom-wide armchair GNRs (9-AGNRs) after encapsulation in hexagonal boron-nitride (h-BN), resulting in ultrashort contact lengths. We find that charge transport in our devices occurs via two different mechanisms: at low temperatures (9 K), charges flow through single GNRs, resulting in quantum dot (QD) behavior with well-defined Coulomb diamonds (CDs), with addition energies in the range of 16 to 400 meV. For temperatures above 100 K, a combination of temperature-activated hopping and polaron-assisted tunneling takes over, with charges being able to flow through a network of 9-AGNRs across distances significantly exceeding the length of individual GNRs. At room temperature, our short-channel field-effect transistor devices exhibit on/off ratios as high as 3 × 105 with on-state current up to 50 nA at 0.2 V. Moreover, we find that the contact performance of our edge-contact devices is comparable to that of top/bottom contact geometries but with a significantly reduced footprint. Overall, our work demonstrates that 9-AGNRs can be contacted at their ends in ultra-short-channel FET devices while being encapsulated in h-BN

    Probing chromosome segregation using genetic and chemical perturbations

    No full text
    Despite the continuous recent efforts, cancer remains one of the deadliest diseases worldwide (Bray et al. 2018). Therefore, it is essential to understand the mechanisms of tumor initiation and progression in order to discover new ways to improve cancer therapy. Here, I focused on identifying mechanisms that could potentially contribute to tumor initiation as well as understanding the way of action of chemotherapeutic regimens with the goal to improve their specificity. This thesis is divided into three parts; in the first part, we investigated how defects in the spindle assembly checkpoint (SAC; cellular mechanism that ensures faithful segregation of the genetic material) can contribute to the erroneous segregation of chromosomes in mitosis. In the second part, we focused on how replication stress can impact chromosome segregation and thus chromosomal stability. In the third and last part, we discovered a potential mechanism that cancer cells use to resist treatment

    Monitoring Solid-Phase Reactions in Self-Assembled Monolayers by Surface-Enhanced Raman Spectroscopy

    No full text
    Nanopatterned surfaces enhance incident electromagnetic radiation and thereby enable the detection and characterization of self-assembled monolayers (SAMs), for instance in surface-enhanced Raman spectroscopy (SERS). Herein, Au nanohole arrays, developed and characterized as SERS substrates, are exemplarily used for monitoring a solid-phase deprotection and a subsequent copper(I)-catalyzed azide-alkyne cycloaddition "click" reaction, performed directly on the corresponding SAMs. The SERS substrate was found to be highly reliable in terms of signal reproducibility and chemical stability. Furthermore, the intermediates and the product of the solid-phase synthesis were identified by SERS. The spectra of the immobilized compounds showed minor differences compared to spectra of the microcrystalline solids. With its uniform SERS signals and the high chemical stability, the platform paves the way for monitoring molecular manipulations in surface functionalization applications
    corecore