499 research outputs found

    Impacts of water residence time on lake thermal structure:Implications for management and climate change

    Get PDF
    Lakes provide globally important ecosystem services. However, the dual threats of eutrophication and climate change threaten lakes’ ability to provide these services. Water residence time (WRT), the ratio between lake volume and discharge, is important for lake functioning, affecting nutrient loading, time available for biogeochemical processes, and flushing of biota. WRT manipulations have been proposed as a novel management intervention to restore eutrophic lakes by inhibiting seasonal stratification and thereby preventing hypolimnetic anoxia and associated internal loading. However, the impact of WRT on lake thermal structure is not well understood, and the contribution of inflows to lake heat budgets are often overlooked. Changes to WRT are also relevant in a climate change context. River flow changes, driven by evaporation and precipitation changes, are projected for more than three-quarters of the landmass. This thesis uses long-term and high-frequency data from a small UK lake, alongside hydrodynamic modelling to examine the extent to which management and climate-induced WRT changes could affect lake thermal structure and subsequent impacts on lake function. Results reveal that annual WRT changes impact lake temperatures year-round, with the direction of change seasonal. Shorter WRT caused cooling in the summer and warming in the winter. Annual WRT reductions failed to inhibit stratification, only weakening stability, and hypolimnetic anoxia persisted. However, results showed that reductions in WRT were enhancing deep-water oxygenation and that strategic sub-seasonal management could potentially control internal loading. WRT changes during the summer stratified period were associated with short-term reductions in water column stability, increased vertical mixing, and replenishment of deep-water oxygen. Results also highlighted that in the northwest of England, river flow changes are likely to be exacerbating air temperature warming impacts on lakes. Failing to account for future WRT changes could be underestimating the impact of climate change, in a multitude of short-residence time lakes

    Interacting impacts of hydrological changes and air temperature warming on lake temperatures highlight the potential for adaptive management

    Get PDF
    Globally, climate warming is increasing air temperatures and changing river flows, but few studies have explicitly considered the consequences for lake temperatures of these dual effects, or the potential to manage lake inflows to mitigate climate warming impacts. Using a one-dimensional model, we tested the sensitivity of lake temperatures to the separate and interacting effects of changes in air temperature and inflow on a small, short-residence time (annual average ≈ 20 days), temperate lake. Reducing inflow by 70% increased summer lake surface temperatures 1.0–1.2 °C and water column stability by 11–19%, equivalent to the effect of 1.2 °C air temperature warming. Conversely, similar increases in inflow could result in lake summer cooling, sufficient to mitigate 0.75 °C air temperature rise, increasing to more than 1.1 °C if inflow temperature does not rise. We discuss how altering lake inflow volume and temperature could be added to the suite of adaptation measures for lakes

    Interacting impacts of hydrological changes and air temperature warming on lake temperatures highlight the potential for adaptive management

    Get PDF
    Globally, climate warming is increasing air temperatures and changing river flows, but few studies have explicitly considered the consequences for lake temperatures of these dual effects, or the potential to manage lake inflows to mitigate climate warming impacts. Using a one-dimensional model, we tested the sensitivity of lake temperatures to the separate and interacting effects of changes in air temperature and inflow on a small, short-residence time (annual average ≈ 20 days), temperate lake. Reducing inflow by 70% increased summer lake surface temperatures 1.0–1.2 °C and water column stability by 11–19%, equivalent to the effect of 1.2 °C air temperature warming. Conversely, similar increases in inflow could result in lake summer cooling, sufficient to mitigate 0.75 °C air temperature rise, increasing to more than 1.1 °C if inflow temperature does not rise. We discuss how altering lake inflow volume and temperature could be added to the suite of adaptation measures for lakes

    Interacting impacts of hydrological changes and air temperature warming on lake temperatures highlight the potential for adaptive management

    Get PDF
    Globally, climate warming is increasing air temperatures and changing river flows, but few studies have explicitly considered the consequences for lake temperatures of these dual effects, or the potential to manage lake inflows to mitigate climate warming impacts. Using a one-dimensional model, we tested the sensitivity of lake temperatures to the separate and interacting effects of changes in air temperature and inflow on a small, short-residence time (annual average ≈ 20 days), temperate lake. Reducing inflow by 70% increased summer lake surface temperatures 1.0–1.2 °C and water column stability by 11–19%, equivalent to the effect of 1.2 °C air temperature warming. Conversely, similar increases in inflow could result in lake summer cooling, sufficient to mitigate 0.75 °C air temperature rise, increasing to more than 1.1 °C if inflow temperature does not rise. We discuss how altering lake inflow volume and temperature could be added to the suite of adaptation measures for lakes

    Annual water residence time effects on thermal structure: a potential lake restoration measure?

    Get PDF
    Innovative methods to combat internal loading issues in eutrophic lakes are urgently needed to speed recovery and restore systems within legislative deadlines. In stratifying lakes, internal phosphorus loading is particularly problematic during the summer stratified period when anoxia persists in the hypolimnion, promoting phosphorus release from the sediment. A novel method to inhibit stratification by reducing residence times is proposed as a way of controlling the length of the hypolimnetic anoxic period, thus reducing the loading of nutrients from the sediments into the water column. However, residence time effects on stratification length in natural lakes are not well understood. We used a systematic modelling approach to investigate the viability of changes to annual water residence time in affecting lake stratification and thermal dynamics in Elterwater, a small stratifying eutrophic lake in the northwest of England. We found that reducing annual water residence times shortened and weakened summer stratification. Based on finer-scale dynamics of lake heat fluxes and water column stability we propose seasonal or sub-seasonal management of water residence time is needed for the method to be most effective at reducing stratification as a means of controlling internal nutrient loading

    Can reductions in water residence time be used to disrupt seasonal stratification and control internal loading in a eutrophic monomictic lake?

    Get PDF
    Anthropogenic eutrophication caused by excess loading of nutrients, especially phosphorus (P), from catchments is a major cause of lake water quality degradation. The release of P from bed sediments to the water column, termed internal loading, can exceed catchment P load in eutrophic lakes, especially those that stratify during warm summer periods. Managing internal P loading is challenging, and although a range of approaches have been implemented, long-term success is often limited, requiring lake-specific solutions. Here, we assess the manipulation of lake residence time to inhibit internal loading in Elterwater, a shallow stratifying lake in the English Lake District, UK. Since 2016, additional inflowing water has been diverted into the inner basin of Elterwater to reduce its water residence time, with the intention of limiting the length of the stratified period and reducing internal loading. Combining eight years of field data in a Before-After-Control-Impact study with process-based hydrodynamic modelling enabled the quantification of the residence time intervention effects on stratification length, water column stability, and concentrations of chlorophyll a and P. Annual water residence time was reduced during the study period by around 40% (4.9 days). Despite this change, the lake continued to stratify and developed hypolimnetic anoxia. As a result, there was little significant change in phosphorus (as total or soluble reactive phosphorus) or chlorophyll a concentrations. Summer stratification length was 2 days shorter and 7% less stable with the intervention. Our results suggest that the change to water residence time in Elterwater was insufficient to induce large enough physical changes to improve water quality. However, the minor physical changes suggest the management measure had some impact and that larger changes in water residence time may have the potential to induce reductions in internal loading. Future assessments of management requirements should combine multi-year observations and physical lake modelling to provide improved understanding of the intervention effect size required to alter the physical structure of the lake, leading to increased hypolimnetic oxygen and reduced potential for internal loading

    LakeEnsemblR: an R package that facilitates ensemble modelling of lakes

    Get PDF
    Model ensembles have several benefits compared to single-model applications but are not frequently used within the lake modelling community. Setting up and running multiple lake models can be challenging and time consuming, despite the many similarities between the existing models (forcing data, hypsograph, etc.). Here we present an R package, LakeEnsemblR, that facilitates running ensembles of five different vertical one-dimensional hydrodynamic lake models (FLake, GLM, GOTM, Simstrat, MyLake). The package requires input in a standardised format and a single configuration file. LakeEnsemblR formats these files to the input required by each model, and provides functions to run and calibrate the models. The outputs of the different models are compiled into a single file, and several post-processing operations are supported. LakeEnsemblR's workflow standardisation can simplify model benchmarking and uncertainty quantification, and improve collaborations between scientists. We showcase the successful application of LakeEnsemblR for two different lakes

    Association of Clinical and Demographic Factors With the Severity of Palmoplantar Pustulosis.

    Get PDF
    Importance: Although palmoplantar pustulosis (PPP) can significantly impact quality of life, the factors underlying disease severity have not been studied. Objective: To examine the factors associated with PPP severity. Design, Setting, and Participants: An observational, cross-sectional study of 2 cohorts was conducted. A UK data set including 203 patients was obtained through the Anakinra in Pustular Psoriasis, Response in a Controlled Trial (2016-2019) and its sister research study Pustular Psoriasis, Elucidating Underlying Mechanisms (2016-2020). A Northern European cohort including 193 patients was independently ascertained by the European Rare and Severe Psoriasis Expert Network (2014-2017). Patients had been recruited in secondary or tertiary dermatology referral centers. All patients were of European descent. The PPP diagnosis was established by dermatologists, based on clinical examination and/or published consensus criteria. The present study was conducted from October 1, 2014, to March 15, 2020. Main Outcomes and Measures: Demographic characteristics, comorbidities, smoking status, Palmoplantar Pustulosis Psoriasis Area Severity Index (PPPASI), measuring severity from 0 (no sign of disease) to 72 (very severe disease), or Physician Global Assessment (PGA), measuring severity as 0 (clear), 1 (almost clear), 2 (mild), 3 (moderate), and 4 (severe). Results: Among the 203 UK patients (43 men [21%], 160 women [79%]; median age at onset, 48 [interquartile range (IQR), 38-59] years), the PPPASI was inversely correlated with age of onset (r = -0.18, P = .01). Similarly, in the 159 Northern European patients who were eligible for inclusion in this analysis (25 men [16%], 134 women [84%]; median age at onset, 45 [IQR, 34-53.3] years), the median age at onset was lower in individuals with a moderate to severe PGA score (41 years [IQR, 30.5-52 years]) compared with those with a clear to mild PGA score (46.5 years [IQR, 35-55 years]) (P = .04). In the UK sample, the median PPPASI score was higher in women (9.6 [IQR, 3.0-16.2]) vs men (4.0 [IQR, 1.0-11.7]) (P = .01). Likewise, moderate to severe PPP was more prevalent among Northern European women (57 of 134 [43%]) compared with men (5 of 25 [20%]) (P = .03). In the UK cohort, the median PPPASI score was increased in current smokers (10.7 [IQR, 4.2-17.5]) compared with former smokers (7 [IQR, 2.0-14.4]) and nonsmokers (2.2 [IQR, 1-6]) (P = .003). Comparable differences were observed in the Northern European data set, as the prevalence of moderate to severe PPP was higher in former and current smokers (51 of 130 [39%]) compared with nonsmokers (6 of 24 [25%]) (P = .14). Conclusions and Relevance: The findings of this study suggest that PPP severity is associated with early-onset disease, female sex, and smoking status. Thus, smoking cessation intervention might be beneficial

    Single-cell analysis implicates Th17-to-Th2 cell plasticity in the pathogenesis of palmoplantar pustulosis

    Get PDF
    Background Palmoplantar pustulosis (PPP) is a severe inflammatory skin disorder, characterised by eruptions of painful, neutrophil-filled pustules on the palms and soles. While PPP has a profound effect on quality of life, it remains poorly understood and notoriously difficult to treat. Objective We sought to investigate the immune pathways that underlie the pathogenesis of PPP. Methods We applied bulk- and single-cell RNA-sequencing methods to the analysis of skin biopsies and peripheral blood mononuclear cells. We validated our results by flow cytometry and immune fluorescence microscopy Results Bulk RNA-sequencing of patient skin detected an unexpected signature of T-cell activation, with a significant overexpression of several Th2 genes typically upregulated in atopic dermatitis. To further explore these findings, we carried out single-cell RNA-sequencing in peripheral blood mononuclear cells of healthy and affected individuals. We found that the memory CD4+T-cells of PPP patients were skewed towards a Th17 phenotype, a phenomenon that was particularly significant among CLA+ skin-homing cells. We also identified a subset of memory CD4+ T-cells which expressed both Th17 (KLRB1/CD161) and Th2 (GATA3) markers, with pseudo-time analysis suggesting that the population was the result of Th17 to Th2 plasticity. Interestingly, the GATA3+/CD161+ cells were over-represented among the PBMCs of affected individuals, both in the scRNA-seq dataset and in independent flow-cytometry experiments. Dual positive cells were also detected in patient skin by means of immune fluorescence microscopy. Conclusions These observations demonstrate that PPP is associated with complex T-cell activation patterns and may explain why biologics that target individual T-helper populations have shown limited therapeutic efficacy. Clinical implications The simultaneous activation of Th17 and Th2 responses in PPP supports the therapeutic use of agents that inhibit multiple T-cell pathways
    • …
    corecore