46 research outputs found

    The impact of socially responsible investments on sinful firms: An empirical analysis of the UN Principles of Responsible Investment and sin stocks

    Get PDF
    We study the effects of the United Nations Principles of Responsible Investment (UN-PRI) on sinful firms, in which we examine whether monthly returns and the Environmental, Social and Corporate Governance (ESG) performance have changed due to an increase in socially concerned investors. We find evidence suggesting that increased commitment to Socially Responsible Investments (SRI) has a negative effect on sinful firms, estimated to reduce monthly returns by 0.040 percent. This corresponds to a 4.4 percent decrease in the average monthly return. Our findings for ESG performance indicate that the ESG score is unaffected by the additional commitment to the UN-PRI. We conduct the analysis on geographical location and industrial affiliation to determine if these effects are uniform across all samples. Our results suggest that regions and industries have differentiating results.nhhma

    En komparativ analyse av granskningsrapportene etter Alexander L. Kielland-ulykken

    Get PDF
    Etter at plattformen Alexander L. Kielland kantret i 1980 ble det gjennomført to granskinger av ulykken. Først av en norsk granskingskommisjon. Konklusjonene fra kommisjonsrapporten ble bakgrunn for et søksmål mot verftet som bygde plattformen. Søksmålet i den franske handelsretten førte til at en fransk ekspertgruppe ble nedsatt til å gjennomføre en egen granskning med bakgrunn i den norske kommisjonsrapporten. Det har de senere årene oppstått en uenighet rundt disse rapportenes konklusjoner, og om disse rapportene egentlig forteller det samme. Jeg har gjennomført en komparativ diskursanalyse av de to granskningsrapportene. Jeg har da sett på gruppenes medlemmer, kompetanser og hvem de kontaktet. Jeg har videre sett på hva de ulike diskursene anså som korrekte representasjoner av ulykken. Representasjonene er deretter sortert etter hva diskursen anser som viktigere enn andre. Til slutt ble diskursene sammenliknet og plassert i et hegemoni. Resultatene mine viser at til tross for at det er mange likheter mellom rapportene, finnes det flere sentrale ulikheter i rapportenes konklusjoner. Den viktigste forskjellen går på den norske kommisjonens bruk av begrepet hovedårsak om bruddet i D-6 staget. Det samme bruddet omtaler franskmennene som utløsende årsak. Dette forteller oss at franskmennene vektla en sammensatt årsaksforklaring i større grad enn den norske kommisjonen. Det er et eksempel på at til tross for at diskursene er enige om mye, finnes det sentrale og viktige forskjeller.After the platform Alexander L. Kielland capsized in 1980, two investigations into the accident were carried out. First by a Norwegian commission of inquiry. The conclusions from the commission's report became the basis for a lawsuit against the French shipyard that built the platform. The lawsuit in the French commercial court led to a French expert group being set up to carry out a separate investigation based on the Norwegian report. In the last few years, there has been a disagreement about the conclusions of these reports, and whether these reports arrive at the same conclusions. I have carried out a comparative discourse analysis of the two investigation reports. I have then looked at the groups' members, skills and who they contacted. I have furthermore looked at what the various discourses considered to be correct representations of the accident. The representations were then sorted according to what the discourse considers more important than others. Finally, the discourses were compared and placed in a hegemony. My results show that despite the fact that there are many similarities between the reports, there are several key differences in their conclusions. The most important difference concerns the Norwegian commission's use of the term main cause of the breach in the D-6 brace. The French refer to the same breach as the trigger cause. This tells us that the French emphasized a complex causal explanation to a greater extent than the Norwegian commission. It is one example showing that despite the fact that the discourses agree on much, there are central and important differences

    Review on the possible pathophysiological mechanisms underlying visual display terminal-associated dry eye disease

    Get PDF
    Background: Visual display terminal (VDT) use is a key risk factor for dry eye disease (DED). Visual display terminal (VDT) use reduces the blink rate and increases the number of incomplete blinks. However, the exact mechanisms causing DED development from VDT use have yet to be clearly described. Purpose: The purpose of the study was to conduct a review on pathophysiological mechanisms promoting VDT-associated DED. Methods: A PubMed search of the literature investigating the relationship between dry eye and VDT was performed, and relevance to pathophysiology of DED was evaluated. Findings: Fifty-five articles met the inclusion criteria. Several pathophysiological mechanisms were examined, and multiple hypotheses were extracted from the articles. Visual display terminal (VDT) use causes DED mainly through impaired blinking patterns. Changes in parasympathetic signalling and increased exposure to blue light, which could disrupt ocular homeostasis, were proposed in some studies but lack sufficient scientific support. Together, these changes may lead to a reduced function of the tear film, lacrimal gland, goblet cells and meibomian glands, all contributing to DED development. Conclusion: Visual display terminal (VDT) use appears to induce DED through both direct and indirect routes. Decreased blink rates and increased incomplete blinks increase the exposed ocular evaporative area and inhibit lipid distribution from meibomian glands. Although not adequately investigated, changes in parasympathetic signalling may impair lacrimal gland and goblet cell function, promoting tear film instability. More studies are needed to better target and improve the treatment and prevention of VDT-associated DED.publishedVersio

    Determination of insulin secretion from stem cell-derived islet organoids with liquid chromatography-tandem mass spectrometry

    Get PDF
    Organoids are laboratory-grown 3D organ models, mimicking human organs for e.g. drug development and personalized therapy. Islet organoids (typically 100–200 µm), which can be grown from the patient́s own cells, are emerging as prototypes for transplantation-based therapy of diabetes. Selective methods for quantifying insulin production from islet organoids are needed, but sensitivity and carry-over have been major bottlenecks in previous efforts. We have developed a reverse phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) method for studying the insulin secretion of islet organoids. In contrast to our previous attempts using nano-scale LC columns, conventional 2.1 mm inner diameter LC column (combined with triple quadrupole mass spectrometry) was well suited for sensitive and selective measurements of insulin secreted from islet organoids with low microliter-scale samples. Insulin is highly prone to carry-over, so standard tubings and injector parts were replaced with shielded fused silica connectors. As samples were expected to be very limited, an extended Box-Behnken experimental design for the MS settings was conducted to maximize performance. The finale method has excellent sensitivity, accuracy and precision (limit of detection: ≤0.2 pg/µL, relative error: ≤±10%, relative standard deviation: <10%), and was well suited for measuring 20 µL amounts of Krebs buffer containing insulin secreted from islet organoids.publishedVersio

    A red tide in the pack ice of the Arctic Ocean

    Get PDF
    Source at https://doi.org/10.1038/s41598-019-45935-0. In the Arctic Ocean ice algae constitute a key ecosystem component and the ice algal spring bloom a critical event in the annual production cycle. The bulk of ice algal biomass is usually found in the bottom few cm of the sea ice and dominated by pennate diatoms attached to the ice matrix. Here we report a red tide of the phototrophic ciliate Mesodinium rubrum located at the ice-water interface of newly formed pack ice of the high Arctic in early spring. These planktonic ciliates are not able to attach to the ice. Based on observations and theory of fluid dynamics, we propose that convection caused by brine rejection in growing sea ice enabled M. rubrum to bloom at the ice-water interface despite the relative flow between water and ice. We argue that red tides of M. rubrum are more likely to occur under the thinning Arctic sea ice regime

    The seeding of ice algal blooms in Arctic pack ice: The multiyear ice seed repository hypothesis

    Get PDF
    Source at http://dx.doi.org/10.1002/2016JG003668 During the Norwegian young sea ICE expedition (N-ICE2015) from January to June 2015 the pack ice in the Arctic Ocean north of Svalbard was studied during four drifts between 83° and 80°N. This pack ice consisted of a mix of second year, fi rst year, and young ice. The physical properties and ice algal community composition was investigated in the three different ice types during the winter-spring-summer transition. Our results indicate that algae remaining in sea ice that survived the summer melt season are subsequently trapped in the upper layers of the ice column during winter and may function as an algal seed repository. Once the connectivity in the entire ice column is established, as a result of temperature-driven increase in ice porosity during spring, algae in the upper parts of the ice are able to migrate toward the bottom and initiate the ice algal spring bloom. Furthermore, this algal repository might seed the bloom in younger ice formed in adjacent leads. This mechanism was studied in detail for the dominant ice diatom Nitzschia frigida . The proposed seeding mechanism may be compromised due to the disappearance of older ice in the anticipated regime shift toward a seasonally ice-free Arctic Ocean

    Earlier sea-ice melt extends the oligotrophic summer period in the Barents Sea with low algal biomass and associated low vertical flux

    Get PDF
    The decrease in Arctic sea-ice extent and thickness as a result of global warming will impact the timing, duration, magnitude and composition of phytoplankton production with cascading effects on Arctic marine food-webs and biogeochemical cycles. Here, we elucidate the environmental drivers shaping the composition, abundance, biomass, trophic state and vertical flux of protists (unicellular eukaryotes), including phytoplankton, in the Barents Sea in late August 2018 and 2019. The two years were characterized by contrasting sea-ice conditions. In August 2018, the sea-ice edge had retreated well beyond the shelf break into the Nansen Basin (>82°N), while in 2019, extensive areas of the northwestern Barents Sea shelf (>79°N) were still ice-covered. These contrasting sea-ice conditions resulted in marked interannual differences in the pelagic protist community structure in this area. In August 2018, the protist community was in a post-bloom stage of seasonal succession characterized by oligotrophic surface waters and dominance of small-sized phytoplankton and heterotrophic protists (predominantly flagellates and ciliates) at most stations. In 2019, a higher contribution of autotrophs and large-celled phytoplankton, particularly diatoms, to total protist biomass compared to 2018 was reflected in higher chlorophyll a concentrations and suggested that the protist community was still in a late bloom stage at some stations. It is noteworthy that particularly diatoms contributed a considerably higher proportion to the protist biomass at the ice-covered stations in both years compared to the open-water stations. This pattern was also evident in the higher vertical protist biomass flux in 2019, dominated by dinoflagellates and diatoms, compared to 2018. Our results suggest that the predicted transition toward an ice-free Barents Sea will lengthen the oligotrophic summer period with low algal biomass and associated low vertical flux.publishedVersio

    A phase I prospective, non-randomized trial of autologous dendritic cell-based cryoimmunotherapy in patients with metastatic castration-resistant prostate cancer

    Get PDF
    Metastatic castration-resistant prostate cancer (mCRPC) is an immunologically cold disease with dismal outcomes. Cryoablation destroys cancer tissue, releases tumor-associated antigens and creates a pro-inflammatory microenvironment, while dendritic cells (DCs) activate immune responses through processing of antigens. Immunotherapy combinations could enhance the anti-tumor efficacy. This open-label, single-arm, single-center phase I trial determined the safety and tolerability of combining cryoablation and autologous immature DC, without and with checkpoint inhibitors. Immune responses and clinical outcomes were evaluated. Patients with mCRPC, confirmed metastases and intact prostate gland were included. The first participants underwent prostate cryoablation with intratumoral injection of autologous DCs in a 3 + 3 design. In the second part, patients received cryoablation, the highest acceptable DC dose, and checkpoint inhibition with either ipilimumab or pembrolizumab. Sequentially collected information on adverse events, quality of life, blood values and images were analyzed by standard descriptive statistics. Neither dose-limiting toxicities nor adverse events > grade 3 were observed in the 18 participants. Results indicate antitumor activity through altered T cell receptor repertoires, and 33% durable (> 46 weeks) clinical benefit with median 40.7 months overall survival. Post-treatment pain and fatigue were associated with circulating tumor cell (CTC) presence at inclusion, while CTC responses correlated with clinical outcomes. This trial demonstrates that cryoimmunotherapy in mCRPC is safe and well tolerated, also for the highest DC dose (2.0 × 108) combined with checkpoint inhibitors. Further studies focusing on the biologic indications of antitumor activity and immune system activation could be considered through a phase II trial focusing on treatment responses and immunologic biomarkers.publishedVersio

    Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 7 (2017): 40850, doi:10.1038/srep40850.The Arctic icescape is rapidly transforming from a thicker multiyear ice cover to a thinner and largely seasonal first-year ice cover with significant consequences for Arctic primary production. One critical challenge is to understand how productivity will change within the next decades. Recent studies have reported extensive phytoplankton blooms beneath ponded sea ice during summer, indicating that satellite-based Arctic annual primary production estimates may be significantly underestimated. Here we present a unique time-series of a phytoplankton spring bloom observed beneath snow-covered Arctic pack ice. The bloom, dominated by the haptophyte algae Phaeocystis pouchetii, caused near depletion of the surface nitrate inventory and a decline in dissolved inorganic carbon by 16 ± 6 g C m−2. Ocean circulation characteristics in the area indicated that the bloom developed in situ despite the snow-covered sea ice. Leads in the dynamic ice cover provided added sunlight necessary to initiate and sustain the bloom. Phytoplankton blooms beneath snow-covered ice might become more common and widespread in the future Arctic Ocean with frequent lead formation due to thinner and more dynamic sea ice despite projected increases in high-Arctic snowfall. This could alter productivity, marine food webs and carbon sequestration in the Arctic Ocean.This study was supported by the Centre for Ice, Climate and Ecosystems (ICE) at the Norwegian Polar Institute, the Ministry of Climate and Environment, Norway, the Research Council of Norway (projects Boom or Bust no. 244646, STASIS no. 221961, CORESAT no. 222681, CIRFA no. 237906 and AMOS CeO no. 223254), and the Ministry of Foreign Affairs, Norway (project ID Arctic), the ICE-ARC program of the European Union 7th Framework Program (grant number 603887), the Polish-Norwegian Research Program operated by the National Centre for Research and Development under the Norwegian Financial Mechanism 2009–2014 in the frame of Project Contract Pol-Nor/197511/40/2013, CDOM-HEAT, and the Ocean Acidification Flagship program within the FRAM- High North Research Centre for Climate and the Environment, Norway
    corecore