55 research outputs found

    Rare SCARB1 mutations associate with high-density lipoprotein cholesterol but not with coronary artery disease

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked FilesAIMS: Scavenger receptor Class B Type 1 (SR-BI) is a major receptor for high-density lipoprotein (HDL) that promotes hepatic uptake of cholesterol from HDL. A rare mutation p.P376L, in the gene encoding SR-BI, SCARB1, was recently reported to associate with elevated HDL cholesterol (HDL-C) and increased risk of coronary artery disease (CAD), suggesting that increased HDL-C caused by SR-BI impairment might be an independent marker of cardiovascular risk. We tested the hypothesis that alleles in or close to SCARB1 that associate with elevated levels of HDL-C also associate with increased risk of CAD in the relatively homogeneous population of Iceland. METHODS AND RESULTS: Using a large resource of whole-genome sequenced Icelanders, we identified thirteen SCARB1 coding mutations that we examined for association with HDL-C (n = 136 672). Three rare SCARB1 mutations, encoding p.G319V, p.V111M, and p.V32M (combined allelic frequency = 0.2%) associate with elevated levels of HDL-C (p.G319V: β = 11.1 mg/dL, P = 8.0 × 10-7; p.V111M: β = 8.3 mg/dL, P = 1.1 × 10-6; p.V32M: β = 10.2 mg/dL, P = 8.1 × 10-4). These mutations do not associate with CAD (36 886 cases/306 268 controls) (odds ratio = 0.90, 95% confidence interval 0.67-1.22, P = 0.49), despite effects on HDL-C comparable to that reported for p.P376L, both in terms of direction and magnitude. Furthermore, HDL-C raising alleles of three common SCARB1 non-coding variants, including one previously unreported (rs61941676-C: β = 1.25 mg/dL, P = 1.7 × 10-18), and of one low frequency coding variant (p.V135I) that independently associate with higher HDL-C, do not confer increased risk of CAD. CONCLUSION: Elevated HDL-C due to genetically compromised SR-BI function is not a marker of CAD risk.deCODE genetics/Amge

    Common and rare variants associated with kidney stones and biochemical traits.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files. This article is open access.Kidney stone disease is a complex disorder with a strong genetic component. We conducted a genome-wide association study of 28.3 million sequence variants detected through whole-genome sequencing of 2,636 Icelanders that were imputed into 5,419 kidney stone cases, including 2,172 cases with a history of recurrent kidney stones, and 279,870 controls. We identify sequence variants associating with kidney stones at ALPL (rs1256328[T], odds ratio (OR)=1.21, P=5.8 × 10(-10)) and a suggestive association at CASR (rs7627468[A], OR=1.16, P=2.0 × 10(-8)). Focusing our analysis on coding sequence variants in 63 genes with preferential kidney expression we identify two rare missense variants SLC34A1 p.Tyr489Cys (OR=2.38, P=2.8 × 10(-5)) and TRPV5 p.Leu530Arg (OR=3.62, P=4.1 × 10(-5)) associating with recurrent kidney stones. We also observe associations of the identified kidney stone variants with biochemical traits in a large population set, indicating potential biological mechanism.Rare Kidney Stone Consortium 5U54DK083908-07 National Center for Advancing Translational Sciences (NCATS) Rare Diseases Clinical Research Network (RDCRN) Rare Kidney Stone Consortiu

    A genome-wide meta-analysis yields 46 new loci associating with biomarkers of iron homeostasis

    Get PDF
    Bell et al. report 46 new loci associated with biomarkers of iron homeostasis, including ferritin levels, iron binding capacity, and iron saturation, in the Icelandic, Danish and UK populations. The associated loci point to new iron-regulating proteins and important genetic differences between men and women

    Identification of Common Genetic Variants Influencing Spontaneous Dizygotic Twinning and Female Fertility.

    Get PDF
    Spontaneous dizygotic (DZ) twinning occurs in 1%-4% of women, with familial clustering and unknown physiological pathways and genetic origin. DZ twinning might index increased fertility and has distinct health implications for mother and child. We performed a GWAS in 1,980 mothers of spontaneous DZ twins and 12,953 control subjects. Findings were replicated in a large Icelandic cohort and tested for association across a broad range of fertility traits in women. Two SNPs were identified (rs11031006 near FSHB, p = 1.54 × 10(-9), and rs17293443 in SMAD3, p = 1.57 × 10(-8)) and replicated (p = 3 × 10(-3) and p = 1.44 × 10(-4), respectively). Based on ∼90,000 births in Iceland, the risk of a mother delivering twins increased by 18% for each copy of allele rs11031006-G and 9% for rs17293443-C. A higher polygenic risk score (PRS) for DZ twinning, calculated based on the results of the DZ twinning GWAS, was significantly associated with DZ twinning in Iceland (p = 0.001). A higher PRS was also associated with having children (p = 0.01), greater lifetime parity (p = 0.03), and earlier age at first child (p = 0.02). Allele rs11031006-G was associated with higher serum FSH levels, earlier age at menarche, earlier age at first child, higher lifetime parity, lower PCOS risk, and earlier age at menopause. Conversely, rs17293443-C was associated with later age at last child. We identified robust genetic risk variants for DZ twinning: one near FSHB and a second within SMAD3, the product of which plays an important role in gonadal responsiveness to FSH. These loci contribute to crucial aspects of reproductive capacity and health.Support for the Netherlands Twin Register was obtained from the Netherlands Organization for Scientific Research (NWO) and The Netherlands Organization for Health Research and Development (ZonMW) grants, 904-61-193,480-04-004, 400-05-717, Addiction-31160008, 911-09-032, Biobanking and Biomolecular Resources Research Infrastructure (BBMRI –NL, 184.021.007); Royal Netherlands Academy of Science Professor Award (PAH/6635) to DIB; European Research Council (ERC-230374 and ERC-284167); Rutgers University Cell and DNA Repository (NIMH U24 MH068457-06), the Avera Institute, Sioux Falls, South Dakota (USA) and the National Institutes of Health (NIH R01 HD042157-01A1). Part of the genotyping was funded by the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health and Grand Opportunity grants 1RC2 MH089951). We acknowledge support from VU Amsterdam and the Institute for Health and Care Research (EMGO+). The Berghofer Medical Research Institute (QIMR) study was supported by grants from the National Health and Medical Research Council (NHMRC) of Australia (241944, 339462, 389927, 389875, 389891, 389892, 389938, 443036, 442915, 442981, 496610, 496739, 552485, 552498, 1050208, 1075175). Dale R. Nyholt was supported by the Australian Research Council (ARC) Future Fellowship (FT0991022), NHMRC Research Fellowship (APP0613674) Schemes and by the Visiting Professors Programme (VPP) of the Royal Netherlands Academy of Arts and Sciences (KNAW). Allan F. McRae was supported by an NRMRC Career Development Fellowship (APP1083656). Grant W. Montgomery was supported by NIH grant (HD042157, a collaborative study of the genetics of DZ twinning) and NHMRC Fellowship (GNT1078399). The Minnesota Center for Twin and Family Research (MCTFR) was supported in part by USPHS Grants from the National Institute on Alcohol Abuse and Alcoholism (AA09367 and AA11886), and the National Institute on Drug Abuse (DA05147, DA13240, and DA024417). We would like to thank also 23andMe's consented research participants for contributing data on age at menarche for the FSHB gene locus and the Twinning Gwas Consortium (TGC). Co-authors from: Finland (Anu Loukola, Juho Wedenoja, Emmi Tikkanen, Beenish Qaiser), Sweden (Nancy Pedersen, Andrea Ganna), United kingdom King's College London (Department of Twin Research & Genetic Epidemiology: Pirro Hysi, Massimo Mangino), Institute of Psychiatry, Psychology & Neuroscience, Medical Research Council Social, Genetic and Developmental Psychiatry Centre (Eva Krapohl, Andrew McMillan).This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.ajhg.2016.03.00

    A rare IL33 loss-of-function mutation reduces blood eosinophil counts and protects from asthma.

    Get PDF
    Efst á síðunni er hægt að nálgast greinina í heild sinni með því að smella á hlekkinnIL-33 is a tissue-derived cytokine that induces and amplifies eosinophilic inflammation and has emerged as a promising new drug target for asthma and allergic disease. Common variants at IL33 and IL1RL1, encoding the IL-33 receptor ST2, associate with eosinophil counts and asthma. Through whole-genome sequencing and imputation into the Icelandic population, we found a rare variant in IL33 (NM_001199640:exon7:c.487-1G>C (rs146597587-C), allele frequency = 0.65%) that disrupts a canonical splice acceptor site before the last coding exon. It is also found at low frequency in European populations. rs146597587-C associates with lower eosinophil counts (β = -0.21 SD, P = 2.5×10-16, N = 103,104), and reduced risk of asthma in Europeans (OR = 0.47; 95%CI: 0.32, 0.70, P = 1.8×10-4, N cases = 6,465, N controls = 302,977). Heterozygotes have about 40% lower total IL33 mRNA expression than non-carriers and allele-specific analysis based on RNA sequencing and phased genotypes shows that only 20% of the total expression is from the mutated chromosome. In half of those transcripts the mutation causes retention of the last intron, predicted to result in a premature stop codon that leads to truncation of 66 amino acids. The truncated IL-33 has normal intracellular localization but neither binds IL-33R/ST2 nor activates ST2-expressing cells. Together these data demonstrate that rs146597587-C is a loss of function mutation and support the hypothesis that IL-33 haploinsufficiency protects against asthma.Netherlands Asthma Foundation University Medical Center Groningen Ministry of Health and Environmental Hygiene of Netherlands Netherlands Asthma Stichting Astma Bestrijding BBMRI European Respiratory Society private and public research funds AstraZeneca ALK-Abello, Denmar

    Genetic architecture of band neutrophil fraction in Iceland

    Get PDF
    Publisher Copyright: © 2022, The Author(s).The characteristic lobulated nuclear morphology of granulocytes is partially determined by composition of nuclear envelope proteins. Abnormal nuclear morphology is primarily observed as an increased number of hypolobulated immature neutrophils, called band cells, during infection or in rare envelopathies like Pelger-Huët anomaly. To search for sequence variants affecting nuclear morphology of granulocytes, we performed a genome-wide association study using band neutrophil fraction from 88,101 Icelanders. We describe 13 sequence variants affecting band neutrophil fraction at nine loci. Five of the variants are at the Lamin B receptor (LBR) locus, encoding an inner nuclear membrane protein. Mutations in LBR are linked to Pelger-Huët anomaly. In addition, we identify cosegregation of a rare stop-gain sequence variant in LBR and Pelger Huët anomaly in an Icelandic eight generation pedigree, initially reported in 1963. Two of the other loci include genes which, like LBR, play a role in the nuclear membrane function and integrity. These GWAS results highlight the role proteins of the inner nuclear membrane have as important for neutrophil nuclear morphology.Peer reviewe

    Eighty-eight variants highlight the role of T cell regulation and airway remodeling in asthma pathogenesis

    Get PDF
    Publisher's version (útgefin grein)Asthma is one of the most common chronic diseases affecting both children and adults. We report a genome-wide association meta-analysis of 69,189 cases and 702,199 controls from Iceland and UK biobank. We find 88 asthma risk variants at 56 loci, 19 previously unreported, and evaluate their effect on other asthma and allergic phenotypes. Of special interest are two low frequency variants associated with protection against asthma; a missense variant in TNFRSF8 and 3‘ UTR variant in TGFBR1. Functional studies show that the TNFRSF8 variant reduces TNFRSF8 expression both on cell surface and in soluble form, acting as loss of function. eQTL analysis suggests that the TGFBR1 variant acts through gain of function and together with an intronic variant in a downstream gene, SMAD3, points to defective TGFβR1 signaling as one of the biological perturbations increasing asthma risk. Our results increase the number of asthma variants and implicate genes with known role in T cell regulation, inflammation and airway remodeling in asthma pathogenesis.We thank the individuals who participated in this study and the staff at the Icelandic Patient Recruitment Center and the deCODE genetics core facilities. Further to all our colleagues who contributed to the data collection and phenotypic characterization of clinical samples as well as to the genotyping and analysis of the whole-genome association data. This research has been conducted using the UK biobank Resource under Application Number ‘24711’.Peer Reviewe

    Genetic variability in the absorption of dietary sterols affects the risk of coronary artery disease.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadAims: To explore whether variability in dietary cholesterol and phytosterol absorption impacts the risk of coronary artery disease (CAD) using as instruments sequence variants in the ABCG5/8 genes, key regulators of intestinal absorption of dietary sterols. Methods and results: We examined the effects of ABCG5/8 variants on non-high-density lipoprotein (non-HDL) cholesterol (N up to 610 532) and phytosterol levels (N = 3039) and the risk of CAD in Iceland, Denmark, and the UK Biobank (105 490 cases and 844 025 controls). We used genetic scores for non-HDL cholesterol to determine whether ABCG5/8 variants confer greater risk of CAD than predicted by their effect on non-HDL cholesterol. We identified nine rare ABCG5/8 coding variants with substantial impact on non-HDL cholesterol. Carriers have elevated phytosterol levels and are at increased risk of CAD. Consistent with impact on ABCG5/8 transporter function in hepatocytes, eight rare ABCG5/8 variants associate with gallstones. A genetic score of ABCG5/8 variants predicting 1 mmol/L increase in non-HDL cholesterol associates with two-fold increase in CAD risk [odds ratio (OR) = 2.01, 95% confidence interval (CI) 1.75-2.31, P = 9.8 × 10-23] compared with a 54% increase in CAD risk (OR = 1.54, 95% CI 1.49-1.59, P = 1.1 × 10-154) associated with a score of other non-HDL cholesterol variants predicting the same increase in non-HDL cholesterol (P for difference in effects = 2.4 × 10-4). Conclusions: Genetic variation in cholesterol absorption affects levels of circulating non-HDL cholesterol and risk of CAD. Our results indicate that both dietary cholesterol and phytosterols contribute directly to atherogenesis. Keywords: ABCG5/8; Absorption; Dietary cholesterol; Genetics; Phytosterols.Novo Nordisk Foundation University College London Hospital National Institute for Health Research Biomedical Research Centr

    A genome-wide meta-analysis yields 46 new loci associating with biomarkers of iron homeostasis

    Get PDF
    Abstract: Iron is essential for many biological functions and iron deficiency and overload have major health implications. We performed a meta-analysis of three genome-wide association studies from Iceland, the UK and Denmark of blood levels of ferritin (N = 246,139), total iron binding capacity (N = 135,430), iron (N = 163,511) and transferrin saturation (N = 131,471). We found 62 independent sequence variants associating with iron homeostasis parameters at 56 loci, including 46 novel loci. Variants at DUOX2, F5, SLC11A2 and TMPRSS6 associate with iron deficiency anemia, while variants at TF, HFE, TFR2 and TMPRSS6 associate with iron overload. A HBS1L-MYB intergenic region variant associates both with increased risk of iron overload and reduced risk of iron deficiency anemia. The DUOX2 missense variant is present in 14% of the population, associates with all iron homeostasis biomarkers, and increases the risk of iron deficiency anemia by 29%. The associations implicate proteins contributing to the main physiological processes involved in iron homeostasis: iron sensing and storage, inflammation, absorption of iron from the gut, iron recycling, erythropoiesis and bleeding/menstruation

    Circulatory effects of hypoxia, acute normovolemic hemodilution, and their combination in anesthetized pigs

    No full text
    BACKGROUND: Because hemodilution decreases the oxygen-carrying capacity of blood, it was hypothesized that severe hemodilution would decrease the tolerance to alveolar hypoxia. METHODS: Hemodynamics, oxygen transport, and blood lactate concentrations were compared in ten pigs with normal hematocrit (33 +/- 4%), and ten hemodiluted pigs (hematocrit 11 +/- 1%; mean +/- SD) anesthetized with ketamine-fentanyl-pancuronium during stepwise decreases in inspired oxygen fraction (FIO2; 1.0, 0.35, 0.21, 0.15, 0.10, 0.05). RESULTS: Median systemic oxygen delivery (DO2SY) became critical (the DO2SY value when arterial lactate exceeded 2.0 mmol.l-1) at 10.4 ml.kg-1.min-1 (range 6.9-16.1) in hemodiluted animals and at 11.8 ml.kg-1.min-1 (5.9-32.2) in animals with normal hematocrits (NS). The relationship between mixed venous oxygen saturation and arterial lactate values was less consistent and median critical mixed venous oxygen saturation was higher (P < 0.05) in the hemodiluted group (35%, range 21-64), than in animals with normal hematocrits (21%, 7-68%). In animals with normal hematocrit, decreasing FIO2 from 1.0 to 0.10 resulted in a decrease in DO2SY from 26.3 +/- 9.1 to 9.3 +/- 3.9 ml.kg-1.min-1 (P < 0.01). Cardiac output did not change, systemic oxygen extraction ratio increased from 0.23 +/- 0.08 to 0.68 +/- 0.13 (P < 0.01), and arterial lactate from 0.9 +/- 0.2 to 3.4 +/- 3.0 mmol.l-1 (P < 0.05). Cardiac venous blood flow, as measured by retrograde thermodilution, increased from 5.7 +/- 2.9 to 12.6 +/- 5.7 ml.kg-1.min-1 (P < 0.01). When FIO2 was reduced to 0.05, three animals became hypotensive and died. In the second group, hemodilution increased cardiac output and systemic oxygen extraction ratio (P < 0.01). Cardiac venous blood flow increased from 4.1 +/- 1.7 to 9.8 +/- 5.1 ml.kg-1.min-1 (P < 0.01), and cardiac venous oxygen saturation from 22 +/- 5 to 41 +/- 10% (P < 0.01). During the subsequent hypoxia, cardiac output and DO2SY were maintained until FIO2 = 0.15 (DO2SY = 10.1 +/- 3.3 ml.kg-1.min-1). Cardiac venous blood flow was then 18.5 +/- 10.7 ml.kg-1.min-1 (P < 0.01), but in spite of this, myocardial lactate production occurred. At FIO2 = 0.10 (DO2SY = 7.7 +/- 3.0 ml.kg-1.min-1), arterial lactate concentration increased to 8.5 +/- 2.3 mmol.l-1 (P < 0.01), and most animals became hypotensive. All hemodiluted animals died when FIO2 was decreased to 0.05 (P < 0.01 when compared to animals with normal hematocrit). CONCLUSIONS: Systemic and myocardial lactate production occurred at similar systemic oxygen delivery rates in hemodiluted and nonhemodiluted animals. Mixed venous oxygen saturation may be a less reliable indicator of inadequate oxygen delivery during hemodilution
    corecore