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ARTICLE

A genome-wide meta-analysis yields 46 new loci
associating with biomarkers of iron homeostasis
Steven Bell 1,2,35, Andreas S. Rigas3,35, Magnus K. Magnusson 4,5,35✉, Egil Ferkingstad 4,35,

Elias Allara 1,2,35, Gyda Bjornsdottir4, Anna Ramond1,2,6, Erik Sørensen3, Gisli H. Halldorsson 4,

Dirk S. Paul 1,2, Kristoffer S. Burgdorf3, Hannes P. Eggertsson 4, Joanna M. M. Howson 2, Lise W. Thørner3,

Snaedis Kristmundsdottir4, William J. Astle1,2,7,8, Christian Erikstrup 9, Jon K. Sigurdsson4,

Dragana Vuckovic1,8, Khoa M. Dinh9, Vinicius Tragante 4,10, Praveen Surendran2,11, Ole B. Pedersen 12,

Brynjar Vidarsson13, Tao Jiang1,2,8, Helene M. Paarup 14, Pall T. Onundarson5,15, Parsa Akbari 1,2,8,

Kaspar R. Nielsen16, Sigrun H. Lund 4, Kristinn Juliusson4, Magnus I. Magnusson4, Michael L. Frigge 4,

Asmundur Oddsson 4, Isleifur Olafsson17, Stephen Kaptoge1,2, Henrik Hjalgrim18, Gudmundur Runarsson13,

Angela M. Wood1,2, Ingileif Jonsdottir 4,5, Thomas F. Hansen 19,20,21, Olof Sigurdardottir22,

Hreinn Stefansson 4, David Rye23, DBDS Genomic Consortium*, James E. Peters2, David Westergaard 24,

Hilma Holm 4, Nicole Soranzo 1,8,25, Karina Banasik 24, Gudmar Thorleifsson4,
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Emanuele Di Angelantonio1,2,26,36✉, Henrik Ullum3,36✉ & Kari Stefansson 4,5,36✉

Iron is essential for many biological functions and iron deficiency and overload have major health

implications. We performed a meta-analysis of three genome-wide association studies from

Iceland, the UK and Denmark of blood levels of ferritin (N= 246,139), total iron binding capacity

(N= 135,430), iron (N= 163,511) and transferrin saturation (N= 131,471). We found 62 inde-

pendent sequence variants associating with iron homeostasis parameters at 56 loci, including 46

novel loci. Variants at DUOX2, F5, SLC11A2 and TMPRSS6 associate with iron deficiency anemia,

while variants at TF, HFE, TFR2 and TMPRSS6 associate with iron overload. A HBS1L-MYB

intergenic region variant associates both with increased risk of iron overload and reduced risk of

iron deficiency anemia. The DUOX2 missense variant is present in 14% of the population,

associates with all iron homeostasis biomarkers, and increases the risk of iron deficiency anemia

by 29%. The associations implicate proteins contributing to the main physiological processes

involved in iron homeostasis: iron sensing and storage, inflammation, absorption of iron from the

gut, iron recycling, erythropoiesis and bleeding/menstruation.
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Iron is an essential element for a wide variety of metabolic pro-
cesses such as oxygen transport, cellular respiration, and redox
reactions in numerous metabolic pathways. For this reason, iron

homeostasis is tightly regulated on cellular and systemic levels to
ensure a balance between uptake, transport, storage, and utilization.
Iron deficiency is one of the five leading causes of disability world-
wide, especially among children and women of childbearing age1,2.
Similarly, iron overload is associated with an increased risk of several
major chronic conditions, including diabetes and liver disease1,3.

Four iron biomarkers are used for clinical assessment of iron
status: serum ferritin, serum iron, and total iron-binding capacity
(TIBC) are measured directly, while transferrin saturation
(TSAT) is derived as serum iron divided by TIBC. While serum
ferritin correlates well with body iron stores in non-inflamed
individuals4, TSAT measures the proportion of iron-binding sites
of transferrin that are occupied by iron. TSAT indicates the
availability of iron for erythropoiesis and is low in iron deficiency
and high during iron overload. In some forms of anemia (e.g.,
anemia of inflammation) the iron is not transported efficiently to
the bone marrow for erythropoiesis, despite adequate iron stores.
Since in this situation there is adequate ferritin but low TSAT, it is
useful to evaluate TSAT in addition to ferritin4,5.

Genome-wide association studies (GWAS) have previously
investigated the association between sequence variants and iron
homeostasis biomarkers6–8. The largest study to date yielded 11
loci: ABO, ARNTL, FADS2, HFE, NAT2, SLC40A1, TEX14, TF,
TFR2, TFRC, and TMPRSS6 associating with one or more iron
homeostasis biomarkers (ferritin, iron, TIBC or TSAT)6. To
search for additional sequence variants associated with iron
homeostasis, we performed a GWAS meta-analysis of ferritin,
serum iron, TIBC, and TSAT in Iceland and blood donor studies
from the UK (INTERVAL study) and Denmark (Danish Blood
Donor Study). This was followed by cross-referencing of iron-
associated loci with clinically relevant phenotypes (including iron
deficiency anemia (IDA), iron overload, and red blood cell indi-
ces). We report associations with iron homeostasis biomarkers for
62 independent sequence variants at 56 loci, including 46 novel
loci. Based on a literature review, we categorize 25 of these loci as
involved in iron sensing or storage, inflammation, gut absorption,
iron recycling, erythropoiesis, and bleeding/menstruation.

Results
Overview. We performed a meta-analysis of four iron-related
biomarkers: ferritin (N= 246,139), serum iron (N= 163,511),
TIBC (N= 135,430), and TSAT (N= 131,471), combining GWAS
results from Iceland, the UK, and Denmark (Fig. 1, Supplementary
Data 1). We found associations with iron homeostasis biomarkers
represented by 62 sequence variants at 56 loci, of which 46 have
not been reported in the previous GWAS on iron homeostasis and
are therefore considered novel (Table 1, Table 2, Fig. 2, and
Supplementary Data 2). For each locus, we report the lead variant
(lowest P value) and additional uncorrelated variants (r2 < 0.1)
within the locus with genome-wide significance. Our criteria for
statistical significance have been previously described9 (see
“Methods”). A variant-to-gene mapping algorithm that takes into
account gene location, variant effect (for coding variants), and
effect on gene expression (eQTL) for each variant (lead variant
and LD class) was used to choose a single candidate gene for each
locus (see “Methods”). Twenty-five of the 62 iron homeostasis-
associated sequence variants have a high-confidence predicted
causal gene, 23 variants have multiple top-scoring genes, 36 var-
iants have at least one coding variant or eQTL in the LD class, and
13 variants have more than one gene with coding variants and/or
eQTL in the LD class (Supplementary Data 3). The LD class of a
variant is defined as all variants having r2 > 0.8 with the variant.
Linkage disequilibrium (LD) (r2) is estimated based on the Ice-
landic population. In cases where variants had more than one top-
scoring gene, the gene closest to the lead variant was selected,
except for two loci where likely candidate genes were present
among the top-scoring genes (FTL (ferritin light chain) and
HAMP (hepcidin)) (Supplementary Data 3). Fourteen of the
variants associated with more than one biomarker, bringing the
total number of observed associations to 87 (Supplementary
Data 2). All our associations have P < 3.0 × 10−8. We replicated
the association of all 11 previously reported variants6, 10 at
genome-wide significance (Supplementary Data 2). In addition,
we found six rare variants (minor allele frequency (MAF) < 1%),
six low-frequency variants (1% ≤MAF < 5%), and 37 common
variants that have previously not been reported to associate with
iron homeostasis biomarkers (Supplementary Data 2). Forty-six
variants associate with a single iron biomarker (ferritin, 34;

Fig. 1 Study design for meta-GWAS of iron homeostasis biomarkers. A flowchart describing the study design of the iron homeostasis biomarker GWAS
meta-analysis of Icelandic, UK, and Danish data.
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iron, 8; TIBC, 4), while 12 variants associate with more than
one biomarker (Fig. 3). Only three variants associate with all
four iron biomarkers: p.His678Arg in DUOX2 (rs57659670[C];
MAF= 7.53%), p.Cys282Tyr in HFE (rs1800562[A]; MAF=
6.77%), and p.Val749Ala in TMPRSS6 (rs855791[A]; MAF=
43.1%). The missense variant at DUOX2, a dual oxidase involved
in the generation of H2O2

10, has not previously been associated
with iron homeostasis.

We calculated the correlation between the iron biomarkers and
selected other biomarkers related to iron metabolism (red blood cell
indices, platelet count, erythrocyte sedimentation rate, and C-
reactive protein) (Supplementary Fig. 1) and the genetic correlation
between the four iron biomarkers (Supplementary Data 4). Among
the iron homeostasis biomarkers, the strongest correlation was
between iron and TSAT (0.86) and the strongest genetic correlation
was also between these biomarkers (Iceland TSAT vs. UK iron: 0.53
(SE= 0.19), P= 0.0059; Iceland iron vs. UK TSAT: 0.54 (SE= 0.17),
P= 0.0020) (Supplementary Data 4). Furthermore, we estimated the
heritability of the iron homeostasis biomarkers to be between 0.16
and 0.32 using parent–offspring and sibling correlations, suggesting
that heritability explains 16–32% of the variance of the four iron
homeostasis markers studied (Supplementary Data 5).

We tested for heterogeneity between the results from the
Icelandic, UK, and Danish cohorts (Supplementary Data 2). Of
the 87 associations, 79 are with markers present in two or more
populations and of these, 19 show nominally significant
heterogeneity (P < 0.05). For all associations, the effects are in
the same direction in all three populations, and for 79 of the 87
associations, effects are nominally significant (P < 0.05) in all
three populations (Supplementary Fig. 2, Supplementary Fig. 3).
Eight associations are reported with five rare variants at three loci
found only in Iceland (MAF= 0.12–0.47%): three coding variants
(two missense, one stop-gained) in STAB1, a stop-gained variant
in TF, and a stop-gained variant in TMPRSS6. Common variants
associating with iron biomarkers are reported in all three
populations for each of these loci, providing additional evidence
for these associations (Supplementary Data 2).

Because of the well-known difference in iron homeostasis
between the sexes11, we tested for sexual dimorphism in iron
biomarker associations (Supplementary Data 6). We found
differences in the ferritin effect (using a test for heterogeneity
with P value threshold P < 0.05/62= 8.1 × 10−4) of five of the
62 variants. In addition, we identified one additional variant that
only associates with ferritin in women: a missense variant in VWF
(p.Tyr1584Cys/rs1800386[C]), a likely pathogenic type 2 von
Willebrand disease (VWD) mutation12 (β=−0.17 standard
deviation (SD) [−0.23, −0.12], P= 3.0 × 10−10). Of the six
variants, four have greater effects in women (F5: six times greater
effect, SLC25A37: three times greater effect, DUOX2: 36% greater
effect, and VWF: 13 times greater effect) and two in men (HK1:
four times greater effect, HFE p.Cys282Tyr: 51% greater effect)
(Supplementary Data 6). The four variants with larger effects in
women also have stronger effects in premenopausal than
postmenopausal women (Supplementary Data 7). In addition,
we find sex differences in variants in the well-known iron
regulatory genes HFE (ferritin, iron, and TSAT) and TMPRSS6
(iron) (Supplementary Data 6), again with stronger effects in pre-
vs. postmenopausal women (Supplementary Data 7). For the
variants at F5, SLC25A37, DUOX2, and VWF that show a greater
effect on women, the difference does not persist when comparing
only men and postmenopausal women (Supplementary Data 8).

Iron homeostasis variants and protein quantitative loci
(pQTL). To gain further insight into the biological pathways
involved in iron homeostasis, we tested for association of theT
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62 iron homeostasis variants (including all variants with r2 ≥ 0.8
with any iron homeostasis variants) with an expression of 4792
proteins in serum using the SomaLogic Somascan platform based
on samples from 35,559 Icelanders (Methods, Supplementary
Data 9). Among the 62 variants, 30 have at least one associated
pQTL, where we use r2 > 0.8 as the limit for considering variants
as associated. The variants at ABO, SERPINA1, FUT2, ABCA5,
GCKR, and ASGR1 each have over 50 pQTL, with 24 other var-
iants have between one and 14 pQTL. Interestingly, variants at or
close to HFE (rs55925606[G], β=−0.153 SD [−0.186, −0.120],
P= 2.8 × 10−20), MTMR4 (rs34523089[T], β= 0.062 SD [0.040,
0.084], P= 2.3 × 10−8) and TMPRSS6 (rs885791[A], β= 0.060
SD [0.044, 0.076], P= 9.5 × 10−13) all associate with protein
levels of hepcidin. The variant at TMPRSS6 also associates with
increased protein levels of erythropoietin (β= 0.066 SD [0.050,
0.082], P= 1.6 × 10−15) and transferrin receptor protein 1
(β= 0.127 [0.111, 0.143], P= 1.7 × 10−52). Furthermore, variants
at LEPR and IL6R associate with decreased levels of the inflam-
matory mediator’s serum amyloid A-1 and A-2 proteins, with the
variant at LEPR also associating with reduced levels of C-reactive
protein. The rs762752083[T] stop-gained variant at STAB1
associates with increased levels of von Willebrand factor
(β= 0.510 SD [0.347, 0.673], P= 7.9 × 10−10). Finally, the
rs199138[A] intron variant at DUOX2 associates with decreased

levels of ferritin light chain (β=−0.121 SD [−0.150, −0.092],
P= 3.2 × 10−16). This variant is in strong LD (r2= 0.97) with the
DUOX2 His678Arg missense variant found to associate with a
decrease in serum ferritin.

The loci in the context of systemic iron homeostasis. Based on a
literature review, we placed 24 of the 56 candidate genes, as well
as the female-specific candidate gene VWF, into 6 categories
representing the main physiological processes involved in iron
homeostasis: hepcidin regulation and iron storage (FTL, HAMP,
HFE, TMPRSS6, TFR2, TFRC, TF, MTMR4, and SERPINA1),
inflammation (IL6R, NOD1, and IKZF1), gut absorption
(SLC11A2, SLC40A1, EGLN3, and DUOX2), iron recycling
(SLC11A2, SLC40A1, STAB1, TRIB1, and MAFB), erythropoiesis
(ERFE, SLC25A37, MYB, and HK1) and bleeding/menstruation
(F5 and VWF) (Fig. 4).

Hepcidin regulation and iron storage: Synthesis of the iron
homeostasis hormone hepcidin (HAMP) is under tight regulation
by the liver iron sensing and signaling cascade involving several
proteins, including those encoded by HFE, TMPRSS6, TF, TFR2,
and TFRC13. Hepcidin as the major iron homeostasis hormone
regulates iron transport from cells through inhibition (and
degradation) of ferroportin in cells, such as intestinal epithelial

Table. 2 Novel ferritin-associated variants found in the meta-analysis of Icelandic, UK, and Danish data, excluding variants that
also associate with other iron homeostasis biomarkers (iron, TIBC, and TSAT).

Marker Position (hg38) Min/maj MAF (%) Gene The effect in SD (95% CI) P value Phet
rs75965181 chr1:22257509 A/T 2.14 WNT4 −0.12 (−0.14, −0.097) 3.70 × 10−26 0.709
rs10801913 chr1:115671658 A/G 30.7 VANGL1a 0.024 (0.016, 0.031) 2.63 × 10−10 0.0243
rs551459670 chr1:220115348 A/G 1.10 IARS2a 0.14 (0.1, 0.18) 1.28 × 10−13 0.141
rs1260326 chr2:27508073 T/C 36.8 GCKR 0.025 (0.018, 0.032) 1.48 × 10−12 0.0035
rs6757653 chr2:28948938 T/C 27.4 WDR43a 0.032 (0.024, 0.039) 9.34 × 10−16 0.343
rs1250259 chr2:215435759 T/A 28.8 FN1a −0.024 (−0.032, −0.017) 1.84 × 10−10 0.459
rs762752083 chr3:52502023 T/G 0.24 STAB1a 0.35 (0.26, 0.44) 3.19 × 10−14 –
rs750717575 chr3:52502709 A/G 0.27 STAB1a 0.24 (0.16, 0.32) 2.18 × 10−8 –
rs745795585 chr3:52505379 A/G 0.47 STAB1a 0.29 (0.23, 0.35) 2.60 × 10−19 –
rs34216132 chr3:52693659 C/G 0.333 STAB1a 0.17 (0.11, 0.22) 3.50 × 10−9 0.443
rs1131262 chr3:134222476 T/C 11.2 RYKa −0.032 (−0.042, −0.021) 6.66 × 10−9 0.554
rs36184164 chr6:43813355 G/T 12.6 VEGFA 0.036 (0.025, 0.046) 6.46 × 10−12 0.358
rs2529440 chr7:30472178 T/C 44.6 NOD1a −0.035 (−0.041, −0.028) 4.60 × 10−23 0.0393
rs4841429 chr8:10711019 G/A 7.86 RP1L1 0.06 (0.048, 0.073) 8.21 × 10−21 0.0893
rs13253974 chr8:23520397 A/G 32.3 SLC25A37 0.024 (0.017, 0.032) 2.51 × 10−11 6.1 × 10−9

rs2954029 chr8:125478730 T/A 47.9 TRIB1 −0.024 (−0.031, −0.018) 1.42 × 10−12 0.665
rs7865362 chr9:33117967 T/C 36.0 B4GALT1 0.025 (0.018, 0.032) 1.03 × 10−11 0.223
rs17476364 chr10:69334748 C/T 10.8 HK1 0.043 (0.032, 0.054) 3.57 × 10−14 0.123
rs12419620 chr11:2211323 G/T 16.1 TH −0.031 (−0.04, −0.022) 3.43 × 10−11 0.867
rs12807014 chr11:47738526 C/T 27.4 FNBP4 −0.029 (−0.036, −0.021) 2.72 × 10−13 0.246
rs4938939 chr11:60393365 A/G 29.3 MS4A7a 0.022 (0.015, 0.03) 3.01 × 10−9 0.33
- chr12:50983028 b 0.68 SLC11A2 −0.16 (−0.19, −0.13) 1.46 × 10−24 6.0 × 10−5

rs996347 chr14:33941686 C/T 35.5 EGLN3 0.049 (0.042, 0.056) 2.99 × 10−41 0.0656
rs3743171 chr15:65624189 T/A 19.1 DPP8 −0.024 (−0.032, −0.015) 2.92 × 10−8 0.644
rs9921222 chr16:325782 C/T 49.2 AXIN1 0.025 (0.018, 0.032) 1.09 × 10−12 0.909
rs3747602 chr16:4752385 G/T 36.8 ZNF500 0.021 (0.014, 0.028) 2.47 × 10−9 0.512
rs535064984 chr17:7116978 C/T 0.58 ASGR1 0.23 (0.18, 0.28) 3.61 × 10−19 0.713
rs55789050 chr17:9890100 T/A 33.3 GLP2Ra −0.027 (−0.034, −0.02) 6.07 × 10−14 0.768
rs1542752 chr17:74942005 T/C 15.3 OTOP3a 0.034 (0.025, 0.044) 1.44 × 10−12 0.0478
rs708686 chr19:5840608 T/C 25.8 FUT6 −0.031 (−0.039, −0.023) 1.96 × 10−14 0.317
rs4808802 chr19:18467063 C/G 21.8 ELL 0.028 (0.019, 0.036) 3.42 × 10−11 0.254
rs601338 chr19:48703417 G/A 48.4 FUT2a 0.028 (0.021, 0.035) 7.04 × 10−16 0.0019
rs143041401 chr19:49046859 A/G 1.61 FTL 0.11 (0.078, 0.13) 4.03 × 10−14 0.0017
rs6029148 chr20:40495768 A/G 7.10 MAFB 0.046 (0.033, 0.058) 5.56 × 10−12 0.036

Min/maj minor/major allele, MAF minor allele frequency, Gene predicted causal gene based on a variant-to-gene algorithm (see “Methods”), SD standard deviation, CI confidence interval, Phet P value
from the test for heterogeneity (see “Methods”). The effect is shown for the minor allele.
aHigh-confidence predicted causal gene (based on a variant-to-gene algorithm, see “Methods”).
bThe minor allele is a 3.5 kb deletion in the 3′ UTR of SLC11A2.
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and liver cells and macrophages13. HAMP, HFE, TMPRSS6, TF,
TFR2, and TFRC along with the iron storage protein ferritin light
chain (encoded by FTL) all have variants associated with iron
biomarkers. Furthermore, the MTMR4 variant rs34523089
(MAF= 14.1%), associates with ferritin (β= 0.069 SD [0.059,

0.078], P= 3.2 × 10−48). MTMR4 has been shown to localize to
early endosomes where it interacts with and dephosphorylates
activated R-Smads, thus negatively regulating transforming
growth factor β (TGFβ) signaling14 and TGFβ1 has been shown
to activate hepcidin mRNA expression15. The MTMR4 variant
also associates with hepcidin protein levels in our pQTL study,
similar to what was seen with variants in the known hepcidin
regulators, TMPRSS6, and HFE (Supplementary Data 9). The
SERPINA1 p.Glu288Val variant (rs17580[A], MAF= 3.79%)
associates with increased TIBC (β= 0.076 SD [0.053, 0.099],
P= 1.2 × 10−10). SERPINA1 encodes the protease inhibitor (PI)
alpha-1-antitrypsin (A1AT) and the p.Glu288Val variant—also
known as the PI S allele—is associated with A1AT-deficiency
(A1ATD)16. Liver disease in A1ATD has been linked to liver iron
overload17, and recently A1AT was shown to increase hepcidin
expression through proteolytic cleavage and inhibition of
TMPRSS618.

Inflammation: IL6 and its receptor IL6R are important
inflammatory mediators positively regulating liver hepcidin
during inflammation19–21. The IL6R p.Asp358Ala variant
(rs2228145[C], MAF= 41%) that associates with decreased risk
of rheumatoid arthritis22,23 associates with an increase in serum
iron (β= 0.026 SD [0.018, 0.034], P= 8.4 × 10−11). Leptin and its
receptor LEPR, in addition to its central role as an adipokine,
have been shown to control cellular immune responses in several
pathological situations including rheumatic diseases24. The
intergenic variant rs35945185[A] (MAF= 36.5%) linked to
LEPR associates with iron (β= 0.031 SD [0.023, 0.039],
P= 1.54 × 10−13. The IL6R and LEPR associated variants
(rs2228145[C], rs35945185[A]) both are negatively associated

Fig. 2 Manhattan plots for iron homeostasis biomarker meta-analysis results for ferritin (N= 246,139), serum iron (N= 163,511), total iron-binding
capacity (TIBC, N= 135,430), and transferrin saturation (TSAT, N= 131,471). Variants are plotted by chromosomal position (x-axis) and −log10
P values (y-axis). A likelihood ratio test was used when testing for the association. Blue= novel loci (not reported in previous iron GWAS studies),
red= previously reported loci.

Fig. 3 Venn diagram. Venn diagram showing loci (with predicted gene)
harboring variants associated with ferritin, iron, TIBC, and/or TSAT.
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with inflammatory markers serum amyloid A-1/A-2 proteins, and
furthermore, the LEPR associated variant is also negatively
associated with C-reactive protein (Supplementary Data 9). Also,
the rs2529440[T] intron variant (MAF= 45%) at NOD1,
encoding an intracellular innate immune pattern recognition
sensor for bacterial cell components25, associates with a reduction
in ferritin levels (β=−0.035 SD [−0.014, −0.028], P= 4.6 ×
10−23). Furthermore, the rs12718598[C] intron variant in IKZF1,
encoding the lymphocyte specification and differentiation
transcription factor Ikaros, shown to play a role in auto-
immune diseases26, associates with increased serum iron levels
(β= 0.027 SD [0.019, 0.034], P= 3.7 × 10−11).

Gut absorption: Iron absorption is mediated by the two iron
transporters DMT1 (encoded by SLC11A2) at the luminal side and
ferroportin (encoded by SLC40A1) basolaterally, both regulated by
hepcidin signals and both harboring variants associated with iron
homeostasis biomarkers13. Recently, hepcidin blocking of intestinal
ferroportin was shown to inhibit HIF-2α expression, through
increased intracellular iron and subsequent activation of iron-
dependent prolyl hydroxylases, leading to reduced expression of iron
absorptive proteins27. Mammalial HIF-α prolyl hydroxylases are
encoded by the three genes EGLN1-328. The rs996347[C] intron
variant (MAF= 35%) at EGLN3 associates with increased ferritin
(β= 0.049 SD [0.042, 0.056], P= 3.0 × 10−41). EGLN3 is a likely
candidate to mediate the inhibition of intestinal HIF2α expression, as
it specifically inhibits HIF-2α rather than HIF-1α 29,30. The DUOX2
p.His678Arg variant (rs57659670[C], MAF= 7.5%) associates with
reduced ferritin (β=−0.14 SD [−0.16, −0.13], P= 1.1 × 10−113),
serum iron (β=−0.042 SD [−0.056, −0.028], P= 1.1 × 10−8), and
TSAT (β=−0.058 SD [−0.074, −0.041], P= 5.7 × 10−12) and
increased TIBC (β= 0.077 SD [0.060, 0.094], P= 3.7 × 10−19).
DUOX2 is expressed in the upper intestinal mucosa and may play a
role in innate mucosal immunity10,31. Furthermore, in mouse
models, DUOX1 and DUOX2 knockouts have a greater susceptibility

to Helicobacter felis infection and inflammation32 and epidemiolo-
gical studies have indicated that H. pylori infections in humans are
associated with reduced iron stores33.

Iron recycling: recycling of heme–iron takes place in the
reticuloendothelial system in the spleen and liver, where old red
cells are taken up and iron recycled back to the bone marrow,
providing over 90% of the iron needed for the generation of heme
in red cell precursors1. DMT1 and ferroportin also transport iron
from endocytic vesicles and export iron out of the macrophage,
respectively34. Furthermore, three uncorrelated rare variants
(MAF < 1%) in STAB1 (p.Glu117Ter/rs762752083[T], p.Gly189-
Ser/rs750717575[A] and p.Glu527Lys/rs745795585[A]) and a
variant in LD with a STAB1 variant (GNL3 p.Ser451Thr/
rs34216132[C], r2 > 0.99 with the STAB1 variant p.Ser1089Gly/
rs41292856[G]) (Supplementary Fig. 4) all associate with
increased ferritin, with effects ranging from 0.17 to 0.35 SD
(P= 2.2 × 10−8 to 2.6 × 10−19). STAB1 is primarily expressed in
M2-macrophages and sinusoidal endothelial cells35 and has
been shown to affect phosphatidylserine-mediated uptake of
aged red blood cells36,37. We also report associations of the
intergenic variants rs2954029[T] (MAF= 48%) and rs6029148
[A] (MAF= 7.1%) with reduced and increased ferritin
(rs2954029[T]: β=−0.024 SD [−0.031, −0.018], P= 1.4 ×
10−12; rs6029148[A]: β= 0.046 SD [0.033, 0.058], P= 5.6 ×
10−12). Their closest protein-coding genes, TRIB1 (for rs2954029)
and MAFB (for rs6029148), have both been shown to control the
differentiation of macrophages38,39.

Erythropoiesis: The bone marrow relays signals inhibiting liver
hepcidin synthesis under a state of stress erythropoiesis to make
iron available to erythroid precursors40. Variants located close to
two known iron regulators within the erythropoiesis compart-
ment, the intergenic variant rs13253974[A] (MAF= 32%) near
SLC25A37 (mitoferrin-1)41 and the intron variant rs13007705[T]
at ERFE (erythroferrone)40,42 associate with increased ferritin

Fig. 4 Iron homeostasis loci in the context of systemic iron homeostasis, categorization into main physiological processes. Novel loci are in bold font.
*Gene with a predicted probability of being causal (based on a variant-to-gene algorithm, see “Methods”) larger than 50%. The liver, blood spot, and
erythropoiesis/hematopoiesis cartoons were bought from Shutterstock (standard license), the macrophage is from Wikimedia Commons (https://
commons.wikimedia.org/wiki/File:Macrophage.svg).
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(rs13253974[A]: β= 0.024 SD [0.017, 0.032], P= 2.5 × 10−11),
serum iron (rs13007705[T]: β= 0.029 SD [0.021, 0.037],
P= 2.0 × 10−12) and TSAT (rs13007705[T]: β= 0.033 SD
[0.024, 0.042], P= 1.1 × 10−12). In addition, the rs9399136[C]
variant in the HBS1L-MYB intergenic region associates
with increased serum iron (β= 0.057 SD [0.049, 0.066],
P= 1.1 × 10−36) and TSAT (β= 0.067 SD [0.057, 0.077],
P= 5.3 × 10−39) and reduced TIBC (β=−0.033 SD [−0.044,
−0.023], P= 2.7 × 10−10), while the rs17476364[C] intron
variant in HK1 associates with increased ferritin (β= 0.043 SD
[0.032, 0.054], P= 3.6 × 10−14). Variants in the HBS1L-MYB
intergenic region are known to associate strongly with fetal
hemoglobin levels43,44. Fetal hemoglobin levels are induced
during stress erythropoiesis45,46, a condition also involving ERFE
signaling40. Furthermore, HK1 mutations are associated with
reduced red cell survival47.

Bleeding/menstruation: Loss of iron occurs primarily through
epithelial desquamation and blood loss48. Two iron homeostasis
variants show sexual dimorphism: The F5 p.Arg534Gln variant
(rs6025[T], MAF= 2.8%; also known as factor V Leiden) associates
with increased ferritin (β= 0.15 SD [0.12, 0.17], P= 6.9 × 10−37) and
reduced TIBC (β=−0.093 SD [−0.13, −0.061], P= 1.8 × 10−08)
and has a six times stronger effect on ferritin in females than in
males, while the VWF p.Tyr1584Cys variant (rs1800386[C],
MAF= 0.94%) associates with reduced ferritin in females only
(β=−0.17 SD [−0.23, −0.12], P= 3.0 × 10−10). The factor V
Leiden variant is associated with a hypercoagulable state49 and the
VWF p.Arg534Gln variant is associated with type 2 VWD, a
common inherited bleeding disorder12. Since both variants show
stronger effects in premenopausal than postmenopausal women, and
both variants affect clotting, they are likely working through blood
loss and primarily menstrual bleeding. In addition, in a meta-analysis
using data from Iceland, Denmark, and the UK, the factor V Leiden
variant is protective against menorrhagia (OR= 0.82 SD [0.76–0.88],
P= 2.1 × 10−7). To further address the effects of variants affecting
bleeding and thrombosis we carried out a candidate gene analysis for
association with iron homeostasis markers. We screened for coding
variants in 375 genes associated with abnormal bleeding
(HP:0001892) and 76 genes associated with venous thrombosis
(HP:0004936) listed in Human Phenotype Ontology (https://hpo.jax.
org/). Nineteen new variants in 14 genes associated with at least one
iron homeostasis marker (Supplementary Data 10, Bonferroni
corrected P value threshold of 1.7 × 10−5, ~3000 variants). Only
one of these variants in ARHGAP31 showed sexual dimorphism
(effect on ferritin; women (β= 0.230, P= 8.4 × 10−8), men (β=
−0.044 SD, P= 0.389), Phet= 4.0 × 10−5) (Supplementary Data 10).
One additional missense variant in IRF2BP2 associated with iron in
premenopausal women only (premenopausal women (β=−0.149
SD, P= 4.63 × 10−5), postmenopausal (β= 0.091 SD, P= 0.036),
Phet= 2.40 × 10−5) (Supplementary Data 10).

Iron homeostasis variants and red blood cell traits. To better
understand the effect of the sequence variants on iron home-
ostasis and iron usage, we tested for association with the red
blood cell indices hemoglobin (N= 286,622), mean corpuscular
hemoglobin (N= 286,245), mean corpuscular volume
(N= 286,248), and reticulocyte count (N= 19,031) and com-
pared the effects of variants on them and the four iron bio-
markers (Supplementary Fig. 5, Supplementary Data 11).
Normally, as body iron stores fall, the hemoglobin concentration,
mean corpuscular volume, and mean corpuscular hemoglobin
concentration also fall. The p.Cys282Tyr variant at HFE
(rs1800562) strongly affects all iron and red blood cell biomarkers
except reticulocyte count. Variants at DUOX2, F5, and TRIB1
have a similar pattern of effects on iron and red blood cell

biomarkers, with a negative effect on TIBC and mainly positive
effects on the red cell indices (Supplementary Fig. 5). The variant
showing the strongest effect on ferritin is a stop-gained variant in
STAB1 (Stabilin-1) (β= 0.35 SD [0.26, 0.44], P= 3.2 × 10−14)
(Supplementary Data 2). This variant also shows an unusual
pattern with decreased hemoglobin along with increased ferritin,
indicating that body stores of iron are sufficient but the recycling
of iron from stores is abnormally reduced (Supplementary Fig. 5).

IDA and iron overload. The two extremes of iron homeostasis,
iron deficiency, and iron overload, are clinically important and
associated with high disease burden4,50. In iron deficiency,
depletion of iron stores is followed by reduced iron availability for
erythropoiesis, leading to IDA, presenting as hypochromic,
microcytic anemia with low ferritin and/or low TSAT48.
Increased TSAT, most commonly defined as a saturation above
50%, is used as a screening marker for hemochromatosis and iron
overload51. To understand how the 62 iron homeostasis variants
affect either IDA or iron overload, we tested for association
with IDA (defined as ever simultaneously having hemoglobin <
120 g/L for women, <130 g/L for men, MCV < 80 fl, MCH < 27 pg
and either ferritin < 10 mcg/L or TSAT < 16%; Ncases= 6476,
Ncontrols= 362,706)5 and iron overload (defined as TSAT ever
>50%4, Ncases= 4156, Ncontrols= 342,647) (Fig. 5, Supplementary
Data 12), correcting for 2 × 62= 124 performed tests. The mis-
sense variants in DUOX2 (p.His678Arg; rs57659670[C]) and
F5 (p.Arg534Gln, rs6025[T]) associate with IDA (DUOX2
p.His678Arg: OR= 1.29 [1.20–1.39], P= 2.0 × 10−11; F5
p.Arg534Gln: OR= 0.60 [0.49–0.73]; P= 3.4 × 10−7). The var-
iants showing sexual dimorphism for the effect on ferritin also
showed similar trends with regard to IDA (Supplementary Fig. 6,
Supplementary Data 13). In addition, a 3.55 kb deletion in the
SLC11A2 3′ untranslated region (3′ UTR) and its downstream
intron associates with IDA through a recessive mode of inheri-
tance (OR= 32.5 [10.0–105]; P= 6.4 × 10−9) (Fig. 5, Supple-
mentary Data 12, Supplementary Fig. 7). A rare frameshift
mutation in TMPRSS6 (p.Asn473ThrfsTer63, rs773570300) only
detected in the Icelandic cohort (MAF= 0.16%) also associated
with IDA (OR= 3.0 [2.1–4.4]; P= 1.2 × 10−8). The rs9399136[C]
variant in the intergenic HBS1L/MYB region is the only variant to
associate with both IDA (OR= 0.84 [0.80–0.89], P= 4.7 × 10−11)
and iron overload (OR= 1.13 [1.07–1.20], P= 1.4 × 10−5). This
variant has not been associated with iron homeostasis but has
been associated with hematological traits52 and variants in the
same region have been associated with fetal hemoglobin expres-
sion43,53. Additionally, variants in the iron homeostasis reg-
ulatory genes HFE, TMPRSS6, TF, and TFR2 associate with iron
overload (Fig. 5, Supplementary Data 12).

We tested the 62 iron homeostasis variants for association with
the following eleven clinical manifestations of iron overload and/
or iron deficiency54 based on various meta-analyses performed in
Iceland using data from Iceland, UK, Denmark, and the USA:
hemochromatosis, liver fibrosis/cirrhosis, liver cancer, type 2
diabetes, impotence, cardiomyopathy, osteoporosis, osteoarthritis,
hyperpigmentation, amenorrhea, and restless leg syndrome
(Supplementary Data 14). Taking all 62 × 11= 682 tests into
account using Bonferroni correction, the TMPRSS6 p.Val749Ala
variant (rs855791[A]) associates with less risk of hemochroma-
tosis (Ncases= 719, Ncontrols= 497,001; OR= 0.80 [0.72–0.89],
P= 6.1 × 10−5). The HFE p.Cys282Tyr variant (rs1800562[A]),
the main variant associating with recessive hereditary hemochro-
matosis (type 1) associates with a higher risk of hemochromatosis
(additive model: OR= 25.7 [21.6–30.5], P < 10−300; recessive
model: OR= 218.9 [164.6–291.0], P < 10−300), liver fibrosis/
cirrhosis (Ncases= 1043, Ncontrols= 705,646; additive model:
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OR= 1.50 [1.30–1.74], P= 4.5 × 10−8; recessive model:
OR= 5.54 [3.58–8.58], P= 1.54 × 10−14) and liver cancer
(Ncases= 844, Ncontrols= 792,550; additive model: OR= 1.53
[1.28–1.82], P= 2.3 × 10−6; recessive model: OR= 8.19
[5.04–13.29], P= 1.8 × 10−17), consistent with previous reports3.
Furthermore, the GCKR p.Leu446Pro variant (rs1260326[T])
associates with a lower risk of type 2 diabetes (Ncases= 36,710,
Ncontrols= 663,962; OR= 0.94 [0.93–0.96], P= 1.4 × 10−10) (Sup-
plementary Data 14). We also generated polygenic risk scores
(PRS) for ferritin and TSAT and regressed the scores against the
same eleven clinical manifestations of iron overload and/or iron
deficiency (Supplementary Data 15). The PRS for ferritin and
TSAT only associated with hemochromatosis (ferritin OR= 2.71
[2.49–2.95], P= 9.4 × 10−119; TSAT OR= 3.75 [3.51–4.00], P <
1 × 10−300). Restless leg syndrome has repeatedly been associated
with iron deficiency55,56 and iron supplementation recommended
in select cases57. We confirm that in the Icelandic restless leg
syndrome cohort iron biomarkers suggest increased iron
deficiency (lower ferritin (β=−0.07 SD [−0.12, −0.02] SD;
P= 0.0037) and TSAT (β=−0.06 SD [−0.12, −0.001],
P= 0.045) and higher TIBC (β= 0.14 SD [0.08, 0.20]
SD; P= 8.5 × 10−6) and there is increased incidence of IDA
compared to population controls (OR= 1.39 [1.03–1.84],
P= 0.0244) (Supplementary Data 16). The lack of genetic
association seen with either individual iron homeostasis variants
or PRS argues against a simple causal relationship between iron
deficiency and restless leg syndrome.

Novel SLC11A2 deletion variant. Rare loss-of-function muta-
tions in SLC11A2 (solute carrier family 11 member 2 encoding
DMT1, divalent metal transporter 1) have been associated with a
microcytic anemia with iron overload under the recessive mode
of inheritance58–60 demonstrating a role of DMT1 in both iron
absorption and recycling. We identified 14 homozygous carriers
of the abovementioned deletion in SLC11A2 in the Icelandic
cohort, seven of whom had been diagnosed with IDA (microcytic
anemia with low ferritin and/or low TSAT) and one with
transfusion-dependent anemia; two had required transfusions
and one intravenous iron (Supplementary Data 17).

Transcription of SLC11A2 leads to four major mRNAs with
differing tissue-specific expression patterns61. These messages
differ both in their usage of 5′ exons 1a or 1b and usage of
alternative 3′ translated and untranslated regions (UTRs)
(Fig. 6A). These alternative UTRs differ in that one contains an
iron-response element (IRE), denoted IRE+, while the other UTR
lacks such a motif, denoted IRE−. The IRE+ UTR is primarily
expressed in duodenal and kidney epithelium, mediates iron
absorption, and is regulated directly by cellular iron status

through interaction with IRE-binding proteins62,63. Of the four
highest expressed transcripts in blood, two contain the IRE−
UTRs, and two contain the IRE+ UTRs. The SLC11A2 deletion
extends from within the IRE+ containing 3′ UTR and into the
downstream intron (Fig. 6A). Heterozygotes (N= 251) and
homozygotes (N= 2) express 40% (95% CI: 58–62%, P= 2.2 ×
10−16) and 81% (95% CI: 73–87%, P= 0.015) less IRE+
transcripts than wildtype (N= 12,828), respectively (Fig. 6B).
When comparing allele-specific transcription in heterozygotes
there was a 3.7-fold (P= 2.2 × 10−17) preference for wildtype
allele in IRE+ containing alleles. The deletion removes the native
3′ UTR polyadenylation signal, likely resulting in an unstable
mRNA. The IRE− transcripts are expressed at 29% greater levels
by heterozygotes than noncarriers (95% CI: 26–33%, P= 2.2 × 10
−16) and at 133% greater levels by homozygotes (95% CI:
48–205%; P= 0.016). These data suggest that the SLC11A2
deletion causes isoform-specific effects, suppressing the expres-
sion of IRE+ containing transcripts, that are primarily expressed
in absorptive duodenal and kidney epithelium62 leading to
reduced absorption. This leads to a recessive hereditary IDA.
Hepcidin levels based on proteomics samples from 35,559
Icelanders are reduced in SLC11A2 deletion carriers (β=
−0.172 SD [−0.257, −0.088], P= 5.9 × 10−5), consistent with
systemic iron deficiency64. A single homozygous carrier of the
deletion has a hepcidin value 2.17 SDs below average. The only
previously described genetic IDA, iron refractory IDA, due to
homozygous loss-of-function variants in TMPRSS6, is associated
with hepcidin dysregulation and inappropriately high hepcidin
values64.

Discussion
Through a GWAS meta-analysis of the iron homeostasis bio-
markers ferritin, serum iron, iron-binding capacity, and TSAT in
Iceland, Denmark, and the UK, we have identified 56 loci har-
boring variants associating with one or more of these biomarkers,
46 of which are novel (including six rare variants, six low-
frequency variants, and 37 common variants). Among the novel
loci, variants in DUOX2 and SLC11A2 associate with increased
risk of IDA, while the F5 rs6025[T] variant protects against IDA.
Furthermore, the rs9399136[C] variant at the HBS1L/MYB locus
is protective against IDA while increasing the risk of iron
overload.

While most of these iron homeostasis variants show similar
effects in Iceland, UK, and Denmark, the observed heterogeneity
for a subset of the variants may reflect demographic, clinical, and
environmental differences. In clinical populations, iron home-
ostasis markers are more frequently measured in individuals with

Fig. 5 Iron homeostasis variants associated with iron deficiency anemia (IDA) or iron overload (IO). A forest plot showing the odds ratio (error bars
showing 95% confidence intervals) for each of the genetic variants associated with either iron deficiency anemia (IDA) or iron overload (IO). *Results for
the SLC11A2 deletion variant are shown for the recessive model while results for other variants are for the additive model. Min/Maj minor/major allele,
MAF minor allele frequency, OR odds ratio, CI confidence interval.
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suspected iron deficiency or overload. Blood donors, on the other
hand, are screened for anemia and several other diseases at every
donation. Therefore, people with a previous history of iron
deficiencies are underrepresented in blood donor studies,
although a substantial proportion of blood donors will develop
low or reduced iron stores65. These differences in cohort char-
acteristics could partially explain heterogeneity in effect sizes
between populations for a subset of the variants. The sex-specific
heterogeneity reported highlights the differences between the
sexes in iron homeostasis. The two sequence variants showing the
strongest heterogeneity are both variants in coagulation factors,
the well-known factor V-Leiden mutation49 and a mutation in
VWF known to cause type 2 VWD12. These variants are likely to
mediate their effects through increased (VWF) or decreased (F5)
blood loss, in women being mainly mediated through men-
struation, supported by the finding that factor V Leiden variant
protects against menorrhagia. Thirty-four of the 62 reported
novel variants only associate with ferritin. Possible explanations
of this high number could be that ferritin as a biomarker is
affected by a more broad array of processes, such as inflammation

and tissue damage (e.g., liver injury)66, and also that we have
more ferritin measurements (~246 K vs. ~131–163 K).

Iron deficiency is a major global health problem, especially for
children and women2. A worldwide survey in 2010 showed that
one-third of the world population is anemic with iron deficiency
being responsible for approximately half of that cases50. In
addition to the nonspecific symptoms of IDA, it also may con-
tribute globally to reduced cognitive performance in children67,
adverse outcomes of pregnancies68, and decline in cognition in
the elderly48,69. Despite the importance of iron deficiency and
IDA, no systematic genetic studies looking at iron deficiency or
IDA have been performed. Sequence variants that are common
(at DUOX2 and the HBS1L-MYB intergenic region), low-
frequency (at F5), and rare (at TMPRSS6 and SLC11A2) associ-
ate with IDA (Fig. 5, Table 1). The association of the missense
DUOX2 variant with all iron homeostasis markers, as well as with
IDA is striking. That this association was seen in all three
populations studied but not observed in previous GWAS of iron
homeostasis is intriguing, however, it should be noted that
Benyamin et al.6 reported a subgenome-wide significant asso-
ciation with ferritin near this locus (rs16976620). Our study is
significantly larger and also benefits from more comprehensive
imputation panels made available since then, which likely enabled
us to not only detect an association at genome-wide significance
but also map this to the likely causal gene with high confidence.

The phenotype of recessive IDA with low iron stores that we
report with the rare 3.5 kb deletion within SLC11A2 is different
from the previously reported recessive hypochromic anemia with
iron overload associated with this gene55–57. Further studies to
define the pathways mediating the effects of the variants asso-
ciating with IDA could help shed light on the pathophysiology of
iron deficiency. Notably, neither any individual iron homeostasis
variants nor the PRS for ferritin or TSAT associate with the risk
of restless leg syndrome, a neurological disorder suggested being
exacerbated by iron deficiency70. Although this argues against a
simple causal relationship between the two, a more complex
relationship, e.g., through brain iron concentations71 cannot be
ruled out. Even though hereditary hemochromatosis is most often
associated with HFE p.Cys282Tyr homozygosity, the penetrance
is only 28% in males and much lower in females72. The common
missense variant in TMPRSS6 (rs855791[A], MAF= 43.1%)
protects against hereditary hemochromatosis (OR= 0.80
[0.72–0.89], P= 6.1 × 10−5) and could thus be a modifying gene
in this disease.

In summary, we have identified 46 novel loci affecting iron
homeostasis. Many of the novel candidate genes have roles in
homeostasis through mechanisms, such as absorption, iron
recycling, erythropoiesis, and hepcidin regulation. Furthermore,
we show an association of five of these loci with IDA, a major
clinical entity that hitherto has not been studied thoroughly from
a genetic point of view. This study reveals a substantial catalog of
possible iron regulatory genes, awaiting further inquiry to fully
elucidate their functional role.

Methods
Study subjects from Iceland. The Icelandic data (where around one-half of all
individuals had repeated measurements) include the vast majority of all clinical
laboratory results in Iceland from 1990 to 2017. Serum iron and TIBC were
measured with colorimetric methods and serum ferritin was measured with an
electrochemiluminescence immunoassay using reagents and calibrators and Cobas
6000 and 8000 modular instruments from Roche Diagnostics, Mannheim, Ger-
many. Hemoglobin concentration measurements, as well as other basic hematology
parameters used, were measured on EDTA anticoagulated blood using the Sysmex
XN-1000 hematology analyzer.

All participants who donated samples gave informed consent and the National
Bioethics Committee of Iceland approved the study (VSN-15-198) which was
conducted in agreement with conditions issued by the Data Protection Authority of
Iceland. Personal identities of the participant’s data and biological samples were

Fig. 6 Expression levels of SLC11A2 for novel deletion mutant compared
to wild type. A Coverage plot of RNA-sequenced reads from whole blood
showing the median normalized expression at the 3′ UTR end of SLC11A2 in
wild-type (AA, green; n= 12,828) heterozygous (ADel, blue; n= 251) and
homozygous (DelDel, red; n= 2) individuals for the different SLC11A2
deletion genotypes. B Comparison of expression levels of the four major
SLC11A2 transcripts (two transcripts without iron response elements (IRE)
in their 3′ UTR (IRE-) and two with IRE (IRE+) in their 3′ UTR in whole
blood RNA using a mixed violin- and boxplot. The violin plot shows the
density where the width represents the frequency of the log2 normalized
expression levels. The white boxes show the distribution statistics
(interquartile range and median) and the whiskers represent ±1.5× the
interquartile range. The filled circles correspond to individual expression
values or outliers that lie beyond the extremes of the whiskers.
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encrypted by a third-party system (Identity Protection System), approved, and
monitored by the Data Protection Authority.

Study subjects from the UK. The INTERVAL study is a prospective cohort study
of approximately 45,000 blood donors, representative of the wider donor popula-
tion, nested in a randomized control trial. Participants, aged 18 years or older, were
recruited between 2012 and 2014 from 25 National Health Service Blood and
Transplant static donor centers in England. All participants provided written,
informed consent, and the study was approved by the Cambridge (East) Research
Ethics Committee (ref: 11/EE/0538).

Ferritin measurement was based on the immunological agglutination principle
with the enhancement of the reaction by latex. Latex particles coated with anti-
ferritin antibodies agglutinated with ferritin and the precipitate was determined
turbidimetrically at 570/800 nm. Serum iron was measured using a colorimetric
method (FerroZine) without deproteinization. Under acidic conditions, iron was
liberated from transferrin. Acrobat reduced Fe3+ to Fe2+ which then reacted with
FerroZine to form a colored complex. The color intensity is directly proportional to
the iron concentration and was measured photometrically. TIBC was calculated by
summing up serum iron and unsaturated iron-binding capacity, which was also
measured photometrically. TSAT was calculated by dividing serum iron by TIBC
concentration. All data points lying more than 4.5 interquartile range from the
median were considered outliers and removed (591 for ferritin, 7 for transferrin, 65
for TSAT, and 37 for serum iron).

The genotyping protocol and quality control procedures for INTERVAL study
samples have been described in detail previously73. Briefly, DNA extracted from
buffy coat was used to assay approximately 820,000 variants and short insertions/
deletions on the Affymetrix Axiom «Biobank» genotyping array (Affymetrix, Santa
Clara, California, US). Genotyping was performed in multiple batches of
approximately 4800 samples each. Sample QC was performed including exclusions
for sex mismatches, low call rates, duplicate samples, extreme heterozygosity, and
non-European descent. We carried out high-resolution multiple imputations using
a joint UK10K and 1,000 Genomes Phase 3 (May 2013 release) reference panel and
retained variants with a MAF ≥ 0.1% and/or INFO score ≥0.4 for analysis.

The meta-analyses of hemochromatosis, liver fibrosis/cirrhosis, liver cancer,
type 2 diabetes, osteoarthritis, impotence, cardiomyopathy, osteoporosis,
hyperpigmentation, and amenorrhea (Supplementary Data 14) include data from
the UK Biobank, accessed under Application Number 56270.

Study subjects from Denmark. The Danish Blood Donor Study (DBDS), initiated
in 2010 as collaborative blood donor-oriented and generic research platform and is
an on-going nation-wide prospective cohort with inclusion sites at all Danish blood
collection facilities. Currently, more than 110,000 blood donors are participating,
and more than 95% of invited blood donors are willing to participate74. Due to the
step-wise roll-out of DBDS, an enrichment of individuals from the greater
Copenhagen region (the capital) and the central region of Jutland (the second
largest city) are present in this study. DBDS has secured necessary permissions and
approval from the Danish Data Protection Agency (2007-58-0015) and the Sci-
entific Ethical Committee system (M-20090237). Briefly, regarding the DBDS
genomic cohort DNA is purified from whole blood and subsequently stored at
−20 degrees Celsius. DBDs participants in this study has been genotyped in 1 batch
at Decode genetics using the Global Screening Array by Illumina optimized for
comparison with the Illumina Omni Express chip75. Ferritin was measured on
fresh EDTA-anticoagulated plasma samples using two commercially available
assays: for 30,903 individuals using Ortho Vitros 5600 (Ortho Clinical Diagnostics,
Rochester, NY, USA), and for 2851 individuals using Abbott Architect i2000SR
(Abbott Laboratories, Abbott Park, IL, USA), including 27 individuals that had
measurements taken using both methods.

Whole-genome sequencing. The process used to whole-genome sequence the
28,075 Icelanders, as well as the subsequent imputation, has been described in
recent publications76,77. In summary, we sequenced the whole genomes of 28,075
Icelanders using Illumina technology to a mean depth of at least 10× (median 32×).
Single-nucleotide polymorphism (SNPs) and indels were identified and their
genotypes called using joint calling with Graphtyper78. In total, 155,250 Icelanders
were genotyped using Illumina SNP chips and their genotypes were phased using
long-range phasing79. All sequenced individuals were also chip-typed and long-
range phased, providing information about haplotype sharing that was subse-
quently used to improve genotype calls. Genotypes of the 32 million high-quality
sequence variants were imputed into all chip-typed Icelanders. Variants in the
Icelandic and Danish cohorts were imputed based on the IMPUTE HMM model80

as previously described81. Variants in INTERVAL were imputed using the Sanger
Imputation Server (https://imputation.sanger.ac.uk) which implements the
Burrows–Wheeler transform imputation algorithm PBWT on whole chromo-
somes. A combined UK10K and the 1000 Genomes Phase 3 reference panel was
used82. Using genealogic information, the sequence variants were also imputed into
relatives of the chip-typed further increasing the sample size for association ana-
lysis and the power to detect associations. All of the variants tested had imputation
information over 0.8. The GWAS from Denmark was performed using 19 million
markers identified through whole-genome sequencing of 2816 Danes that were

subsequently imputed into 84,386 chip-typed individuals. The GWAS from the UK
was performed with 19 million markers from the UK10K and 1000 Genomes Phase
3 reference panel, imputed into 43,059 chip-typed individuals participating in the
INTERVAL study. In total, 40 million markers were tested in the meta-analysis.

Association testing and meta-analysis. The four iron homeostasis biomarkers
(ferritin, serum iron, TIBC, and TSAT) were each rank-based inverse normal
transformed to a standard normal distribution (separately for each sex) and
adjusted for age using a generalized additive model. In addition, for the UK cohort,
the biomarkers were adjusted for menopausal status, ABO blood group, body mass
index, smoking levels, alcohol levels, and iron supplementation status. For each
sequence variant, the mixed model implemented in the software BOLT-LMM
v2.383, using the genotype as an additive covariate and the transformed quantitative
trait as a response, was used to test for association with quantitative traits. Logistic
regression was used to test for association between variants and case-control
phenotypes, using software developed at deCODE genetics76.

We used LD score regression to account for distribution inflation in the dataset
due to cryptic relatedness and population stratification84. LD score regression
intercepts were as follows: ferritin: 1.032 (SE= 0.011), iron: 1.016 (SE= 0.025),
TIBC: 1.030 (SE= 0.039), TSAT: 1.025 (SE= 0.020). We used logistic regression to
test for association between sequence variants and binary traits, regressing trait
status against expected genotype count. In the Icelandic data, we adjusted for sex,
age, and county of birth by including these variables in the logistic regression
model. In the UK and Danish data we adjusted for sex and age, as well as principal
components in order to adjust for population stratification.

Results from the Icelandic, UK, and Danish datasets were combined using a
fixed-effect inverse-variance weighted meta-analysis, where different datasets were
allowed to have different population frequencies for alleles and genotypes but
assumed to have a common effect. Heterogeneity in effect estimates was assessed
using a likelihood ratio test. Effects are always given in units of SD. The pooled SD
using data from Iceland, UK, and Denmark are 1.08 μg/L for log(ferritin),
7.76 μmol/L for iron, 14.14 μmol/L for TIBC, and 13.25% for TSAT.

We accounted for multiple testing by means of a weighted Bonferroni
correction, taking into account the higher prior probability of association of certain
variant annotations while controlling the family wise error rate (FWER) at 0.059.
The method has been described previously9 and results in stricter multiple testing
correction than the commonly used threshold of 5 × 10−8 (which would not
control FWER at 0.05 given that 40 million markers were tested) while being more
powerful than simply correcting for 40 million tests using a fixed threshold of 0.05/
40,000,000= 1.25 × 10−9. The resulting significance thresholds were 2.0 × 10−7 for
high-impact variants (including stop-gained, frameshift, splice-acceptor, or splice-
donor variants, N= 11,723), 4.0 × 10−8 for “moderate-impact” variants (including
missense, splice-region variants and in-frame indels, N= 202,336), 3.7 × 10−9 for
“low-impact” variants (including upstream and downstream variants,
N= 2,896,354) and 6.1 × 10−10 or for the “lowest-impact” variants (including
intron and intergenic variants, N= 37,239,641).

Loci were defined based on physical proximity, where variants in a 500 kb
window (lead variant ±250 kb) were considered to be at a single locus. We defined
novel loci as loci not reported in previous GWAS of biomarkers of iron
homeostasis.

Variant-to-gene mapping. To predict the most likely causal gene for each variant
we used an algorithm taking into account the gene location with regard to LD class
(defined as all variants with r2 > 0.8 with the lead variant), the variant effect for
coding variants, and the effect on gene expression (eQTL, restricting to the top cis-
eQTL). The algorithm, called variant-to-gene mapping, considers all genes within
the LD class ±250 kb and outputs a score for each gene.

Often, the GWAS variant is not causal itself but in LD with the causal variant.
To identify the likely causal gene, we defined all variants in linkage disequilibrium
(r2 > 0.8) with the GWAS variant as the LD class. We assumed local effects, where
genes overlapping the LD class interval receive a distance score of 5, while genes
within 250 kb on each side of the LD class interval receive a distance score of 1. The
variants in the LD class were then scored based on their capability to affect gene
coding (i.e., transcription/translation): a variant with high impact (stop-gain and
stop-loss, frameshift indel, donor and acceptor splice-site, and initiator codon
variants) was given a coding score of 150, while a variant with moderate impact
(missense, in-frame indel, splice region) was given a coding score of 30. For each
gene, we summed up the coding scores of all coding variants affecting it, i.e., coding
variants within the gene itself. Variants shown to be correlated with gene
expression (eQTL) in any tissue received an eQTL score of 50. We restricted
ourselves to the top cis-eQTL (lowest P value < 10−7, distance from gene < 1Mb)
for each gene and tissue. We assumed that eQTL in different tissues/different
variants were due to the same signal. Therefore, we did not sum up the eQTL
scores per gene but used the maximum eQTL score per gene. The total score per
gene was computed as the maximum of its distance, coding, and eQTL scores. The
normalized gene score was computed by scaling such that the sum of normalized
scores for all candidate genes was 1, so to enable direct comparisons across genes.
Note that this automatically takes the gene density into account. In cases where
more than one gene share the maximum score (for example, if the LD class has
four genes and they all have probability= 0.25), we chose the gene with the most
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significant eQTL if such information existed, otherwise the gene closest to the lead
variant was selected. Relative values for the scoring for high- and moderate-impact
values were based on enrichment analysis, as previously described9, while the score
of 50 for eQTL was determined in order to make coding and eQTL equally
informative overall. Values for proximity were set to have some degree of
preference for closeby genes, given otherwise equal evidence, while at the same time
giving stronger weight to coding and eQTL than to proximity alone. Data sources
for eQTL data are listed in Supplementary Data 18.

Genetic overlap with other traits. We calculated genetic correlations between
pairs of traits using the cross-trait LD score regression methods84 in our meta-
analysis using summary statistics from traits in the Icelandic and UK datasets. We
used results for about 1.2 million variants, well imputed in both datasets and for
LD information we used precomputed LD scores for European populations
(available from the Broad Institute).

Heritability estimation. Heritability was estimated in the following two ways: (1)
2 × parent–offspring correlation, (2) 2 × full sibling correlation, using the Icelandic
data (where all family relationships are known).

Polygenic risk scores. We generated PRS for ferritin and TSAT and regressed the
scores, along with sex, year of birth, and 20 principal components as covariates in
logistic regression models against 11 clinical manifestations of iron deficiency or
iron overload (restless legs, hemochromatosis, liver fibrosis/cirrhosis, liver cancer,
type 2 diabetes, osteoarthritis, impotence, cardiomyopathy, osteoporosis, hyper-
pigmentation, and amenorrhea). Scores are based on a framework set of 620,000
high-quality SNPs covering the whole genome, adjusted for LD using LDpred85.
The methods used to generate the PRS have been previously described in
detail86. For restless legs, the phenotype data is from Iceland while for the other ten
phenotypes, data is from UK Biobank (restless legs were not available in UK
Biobank). To minimize bias and/or overfitting, the geographical population
with the phenotype data is not included when generating the scores. Thus,
for ferritin, the PRS for restless legs is based on a Denmark+UK GWAS meta-
analysis, while the PRS for the other phenotypes is based on Iceland+
Denmark GWAS meta-analyses. For TSAT, the PRS for restless legs is based
on the UK GWAS, while the PRS for the other phenotypes is based on the
Icelandic GWAS.

Protein measurements (pQTL). During 2000–2019, we collected plasma samples
from 40,004 Icelanders. Fifty-two percent of the samples were collected as part of
the Icelandic Cancer Project, while the remaining samples (48%) were collected as
part of various genetic programs at deCODE genetics, Reykjavík, Iceland. All
samples were measured using the SOMAscan platform, containing 5284 aptamers
providing a measurement of relative binding of the plasma sample to each of the
aptamers in relative fluorescence units, corresponding to 4,792 proteins. After
quality control, unique measurements for N= 35,559 individuals were used for
genome-wide association analysis.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The Icelandic population WGS data have been deposited at the European Variant
Archive under accession code PRJEB15197. The authors declare that the data supporting
the findings of this study are available within the article, its Supplementary Data files, and
upon request. Overall meta-analysis summary statistics have been shared at https://www.
decode.com/summarydata/. The UK Biobank data can be obtained upon application
(ukbiobank.ac.uk). For this study, UK-Biobank data was under project number 56270.

Code availability
We used publicly available software (URLs listed below) in conjunction with algorithms
described in the Methods section: BWA 0.7.10 mem (https://github.com/lh3/bwa);
GenomeAnalysisTKLite 2.3.9 (https://github.com/broadgsa/gatk/); Picard tools 1.117
(https://broadinstitute.github.io/picard/); SAMtools 1.3 (http://samtools.github.io/);
Bedtools v2.25.0-76-g5e7c696z (https://github.com/arq5x/bedtools2/); Variant Effect
Predictor (https://github.com/Ensembl/ensembl-vep).
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