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Genetic variability in the absorption of dietary
sterols affects the risk of coronary artery disease
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Methods
and results

Keywords

We examined the effects of ABCG5/8 variants on non-high-density lipoprotein (non-HDL) cholesterol (N up to
610 532) and phytosterol levels (N=3039) and the risk of CAD in Iceland, Denmark, and the UK Biobank
(105 490 cases and 844 025 controls). We used genetic scores for non-HDL cholesterol to determine whether
ABCG5/8 variants confer greater risk of CAD than predicted by their effect on non-HDL cholesterol. We identified
nine rare ABCG5/8 coding variants with substantial impact on non-HDL cholesterol. Carriers have elevated phytos-
terol levels and are at increased risk of CAD. Consistent with impact on ABCG5/8 transporter function in hepato-
cytes, eight rare ABCG5/8 variants associate with gallstones. A genetic score of ABCG5/8 variants predicting 1 mmol/
L increase in non-HDL cholesterol associates with two-fold increase in CAD risk [odds ratio (OR) = 2.01, 95%
confidence interval (CI) 1.75-2.31, P=9.8 x 107>*] compared with a 54% increase in CAD risk (OR = 1.54, 95% ClI
1.49-1.59, P=1.1 x 107">*) associated with a score of other non-HDL cholesterol variants predicting the same in-
crease in non-HDL cholesterol (P for difference in effects = 2.4 x 107%.

Genetic variation in cholesterol absorption affects levels of circulating non-HDL cholesterol and risk of CAD. Our
results indicate that both dietary cholesterol and phytosterols contribute directly to atherogenesis.

Dietary cholesterol e Phytosterols e Absorption e Genetics ® ABCG5/8

Translational perspective

The importance of dietary cholesterol absorption in the regulation of cholesterol levels in blood and the risk of coronary artery disease
(CAD) has been the subject of controversy. We find that sequence variants that decrease the function of the ABCG5/8 transporter increase
absorption of both cholesterol and phytosterols and increase the risk of CAD. The findings provide mechanistic insights indicating harmful
effects of dietary cholesterol on cardiovascular disease. We also find that the impact of ABCG5/8 variants on the risk of CAD is not fully
explained by non-HDL cholesterol. Thus, in addition to dietary cholesterol other dietary sterols such as phytosterols may contribute directly
to atherogenesis, raising questions about the safety of supplementing food with phytosterols for the purpose of cardiovascular risk reduction.

Introduction

The ABCG5 and ABCG8 genes encode the obligate heterodimers of
the ATP-binding cassette (ABC) transporters G5 and G8 (ABCG5/8)
that have a major role in preventing accumulation of dietary sterols,
including cholesterol and sterols derived from plants (phytosterols),
in the body." The ABCG5/8 transporter is mainly expressed in the
small intestine on the absorptive surface of enterocytes and in the
liver on hepatocytes facing the bile canaliculi (Figure 1).

While the NPC1L1 transporter, the target of the cholesterol-
lowering drug ezetimibe,” is responsible for the non-selective uptake
of sterols into enterocytes and hepatocytes from the intestinal lumen
and bile, respectively, the ABCG5/8 excretes them back into the in-
testinal lumen and bile" (Figure 1).

Rare inactivating mutations in the ABCG5/8 genes cause autosomal
recessive phytosterolaemia (also termed sitosterolaemia). This rare
disorder is characterized by impaired sterol elimination from entero-
cytes and hepatocytes leading to excessive intestinal absorption of
cholesterol and phytosterols, as well as reduced secretion to bile.?
Although autosomal recessive phytosterolaemia frequently involves
hypercholesterolaemia, sometimes to the extreme,’ this is not always
the case and significant premature atherosclerosis has been docu-
mented in the absence of substantial hypercholesterolaemia.>*

Common variants at the ABCG5/8 locus associate with low-density
lipoprotein (LDL) cholesterol,>® phytosterol levels, and the risk of
coronary artery disease (CAD).® Alleles that associate with
decreased levels of LDL cholesterol also associate with increased risk
of gallstones,”*° likely mediated through an effect on cholesterol

saturation in bile. Furthermore, NPC1L1 variants associate with LDL
cholesterol and CAD,S‘11 and rare NPC1L1 inactivating variants asso-
ciate with reduced levels of LDL cholesterol and phytosterols.'
While evidence from genetic studies and randomized clinical trials
of cholesterol-lowering drugs demonstrates that the relationship be-
tween non-HDL/LDL cholesterol and CAD is causal,”’14
bution of dietary cholesterol to cardiovascular diseases (CVDs) and

the contri-

mortality has been debated for decades.'® Over the last few years,
the importance of dietary cholesterol has been deemphasized in diet-
ary recommendations in many countries.'®"”

The role of phytosterols in atherosclerotic disease is also a matter
of controversy.'®2° The ESC/EAS Guidelines for the management of
dyslipidaemias'’ recommend food enriched with phytosterols as a
lifestyle intervention to reduce cholesterol levels by interfering with
intestinal cholesterol absorption.’

Here, we explore whether variability in dietary cholesterol and
phytosterol absorption impacts the risk of CAD, using sequence var-

iants of the ABCG5/8 genes as instruments.

Methods

Detailed description of the studies included and methods used is pro-
vided in Supplementary material online, Methods. Briefly, we analysed
data from three studies of individuals of European origin from Iceland,
Denmark, and UK Biobank. We examined association of sequence var-
iants in ABCG5/8 with non-HDL cholesterol** in up to 610 532 individu-
als, phytosterol levels in 3039 individuals, and the risk of CAD in 105 490
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Figure | A schematic representation of sterol transport in the intestine and liver. Dietary cholesterol and non-cholesterol sterols are transported
from the intestinal lumen into enterocytes via NPC1L1.While approximately 50-60% of the cholesterol that has entered the enterocytes is taken up
into the circulation, the majority of phytosterols are pumped back into the intestinal lumen by ABCG5/8. In addition to excreting phytosterols, the
hepatic ABCG5/8 transporters have a major role in removing cholesterol from the body. Decreased ABCG5/8 function in the liver reduces gallstone
risk through diminished cholesterol saturation in bile. Phytosterols in the diet are believed to attenuate the pool of absorbable cholesterol by displac-

ing cholesterol from intestinal micelles.

cases and 844 025 controls. Variant associations were also assessed in
public data from the Global Lipids Genetics Consortium?® (N up to
333 359) and CARDIoGRAM Exome®* (42 355 cases and 78 240
controls).

Logistic or linear regression, assuming additive models, was used to
test for the association of variants with binary or quantitative traits, re-
spectively. Variant association results from the different study groups
were combined into meta-analyses assuming fixed effects. All P-values
reported in this study are two-sided.

We constructed individual-level genetic risk scores (GRS) for levels of
non-HDL cholesterol*? and calculated into the study subjects. The GRSs
were generated for each individual by summing the product of the allele
count and the corresponding non-HDL cholesterol effect size.

Results

Coding variants in ABCG5/8 and
association with non-high density
lipoprotein cholesterol and coronary

artery disease

We identified 35 rare [minor allele frequency (MAF) >0.01% and
<1%)] coding variants in 28 075 whole-genome sequenced Icelanders
that we subsequently imputed into chip-typed Icelanders and their
close relatives (Supplementary material online, Methods). Six

common (MAF > 5%) variants (five coding and one intronic)
reportedsf10 to associate with LDL cholesterol, CAD, and gallstones
were also examined. We tested these ABCG5/8 variants for associ-
ation with non-HDL and LDL cholesterol in datasets from Iceland,
Denmark, the UK Biobank, and the Global Lipids Genetics
Consortium (GLGC),” and in a meta-analysis (N up to 943 891;
Supplementary material online, Tables S7 and S2).

Of the 35 rare coding variants, nine associate with non-HDL chol-
esterol (P<0.05/41=12 x 10°%) (Table 1, Figure 2, and Supplemen-
tary material online, Table S7). We note that two or more of these
nine rare variants never occur on the same haplotype (D= -1, pair-
wise R* < 3.0 x 10°®), with the exception of p. Phe624Leu in ABCG5
that is always observed on the background of p. Gly27Ala in the
same gene (D'=1and R* = 0.32).

All six reported common variants associate with non-HDL choles-
terol in our dataset (Supplementary material online, Table ST).
However, these associations are fully captured by three variants with
low pairwise correlation (R* < 0.1; Supplementary material online,
Table S3), p. Asp19His (rs11887534), the intronic rs4299376, and p.
Thr400Lys (rs4148217) (Figure 2 and Supplementary material online,
Table S3).

Next, we examined the association of the 35 rare coding and the 3
common variants with CAD in Iceland (39 020 cases and 319 620
controls) and in a meta-analysis of data from Iceland, Denmark, UK
Biobank, and the public CARDIoGRAM Exome®* (combined up to
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Association of ABCG5/8 variants with non-HDL cholesterol, CAD, and gallstones

Examined ABCG5/8 variants:

12 non-HDL cholesterol

* 35 novel rare coding variants vanants ABCG5/8-GRS
* 3 reported common variants 5 CAD variants Based on 11 of 12 non-
(2 coding and 1 non-coding) - HDL cholesterol variants;
p.IZISnggyr p.Phe624Leu was not
p.. =Y . = 11 gallstob included due to
intronic iant correlation with
Variants with p-Thra00Lys vartants p. Gly27Ala (R*=0.3)
significant Al p.Glu238Lys

associations

p.Phe624Leu

p.Met622Val
p.Ala98Gly
p.Gly27Ala

p.Arg543Ser

kp.Th r401Ser /

p.GIn271Arg
p.Trp361Ter

Figure 2 A schematic representation of the ABCG5/8 variant associations.

147 825 cases and 922 265 controls) (Table 1 and Supplementary ma-
terial online, Table S$4). Two rare variants associate with CAD
(P<0.05/35=14 x 107%), p. His250Tyr (OR = 1.96, P=3.9 x 107%),
and p. Arg198GlIn (OR = 129, P = 6.2 x 10™), and both are predicted
to have deleterious impact on the protein (Supplementary material
online, Table S5). Furthermore, His250 is located in a highly con-
served motive (GERP score =5.56; top 0.3% genome wide), the histi-
dine loop (H-loop) in the nucleotide-binding domain of ABC
transporters (Supplementary material online, Methods). We also rep-
licate the CAD association of the common variants”® (Table 1). The
alleles of the five variants that associate with higher risk of CAD all as-
sociate with higher levels of non-HDL cholesterol.

The association of the 12 non-HDL cholesterol ABCG5/8 variants
with other atherosclerosis-related phenotypes is shown in
Supplementary material online, Table S6. We find several nominally
significant associations between rare ABCG5/8 coding variants and
other CVD. For example, p. His250Tyr that has the largest effect on
non-HDL cholesterol and phytosterols and associates with CAD,
also associates with aortic valve stenosis (P =0.0056), heart failure
(P=0.0018), and sudden cardiac death (P= 3.1 x 107).

None of the variants associates (at P<8.3 x 10'4, corrected for
the number of variants and traits tested) with the atherosclerotic risk
factors, hypertension, type 2 diabetes, body mass index, triglyceride,
or HDL cholesterol, except the common intronic variant rs4299376
that has small effect on triglyceride levels (= 0.0096, P=6.5 x 10°°)
(Supplementary material online, Table S6).

Variant effects on phytosterol levels

We measured three of the most common phytosterols (sitosterol,
campesterol, and stigmasterol) in serum from 3039 Icelanders,
enriched for carriers of the rare coding variants in ABCG5/8 that

associate with non-HDL cholesterol. Sufficiently many serum samples
were available from carriers of seven rare variants and of those six as-
sociate with phytosterol levels. The variant p. His250Tyr with great-
est effect on non-HDL cholesterol also has the greatest effect on all
three phytosterols (f for stigmasterol =1.27 SD, P=22 x 10™)
(Table 2).

In the Icelandic dataset, we identified seven homozygous or com-
pound heterozygous carriers of rare ABCG5/8 coding variants. Two
homozygous carriers of p. Arg263Gln in ABCG8 have extremely high
phytosterol levels consistent with autosomal recessive phytostero-
laemia (see Supplementary material online, Note).

In agreement with the role of the ABCG5/8 transporter in regulat-
ing intestinal absorption of both cholesterol and phytosterols, the
ABCG5/8 variant effects on non-HDL cholesterol and phytosterol lev-
els are highly correlated (R* = 0.97, Figure 3 and Supplementary ma-
terial online, Table S7C and G). In the Icelandic data, 1 mmol/L
increase in non-HDL cholesterol driven by the ABCG5/8 variants
with 256 SD
(P=1.1x10®). Two common NPCIL1 variants measured in our

associates increase in  stigmasterol levels
dataset associate with phytosterol levels (Supplementary material
online, Table S7), but the phytosterol effect per unit change in non-
HDL cholesterol is smaller than that observed for the ABCG5/8 var-
iants (Figure 3). The apparent difference in the effects of NPC1L1 and
ABCG5/8 variants on phytosterol levels is consistent with the non-
selective uptake of sterols into enterocytes mediated by NPC1L1,"*
as opposed to the preferential excretion of phytosterols from enter-
ocytes into the intestinal lumen mediated by ABCG5/8.

Consistent correlation between effects on non-HDL cholesterol
and phytosterol levels is not observed for non-HDL cholesterol asso-
ciating variants outside the ABCG5/8 and NPCILT loci (R* = 0.13,
P=0.0012, Figure 3 and Supplementary material online, Table S7).
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Figure 3 The relationship between variant effects on non-high-density lipoprotein cholesterol and stigmasterol. The crosses show 95% confidence
intervals. SD, standard deviation units. The red (for ABCG5/8 variants) and black (for variants outside ABCG5/8 locus) lines are the best lines fitting the
stigmasterol effects for non-high-density lipoprotein cholesterol variants using weighted regression with one over standard error squared as weights.
The grey-shaded area around the line is the 95% confidence interval. NPC1L1 variants are plotted in blue. See data in Supplementary material online,

Table S7Cand G.

Table 3 Disparate effects of genetic risk scores for non-high density lipoprotein cholesterol on the risk of coronary ar-

tery disease

GRS-other

Non-HDL cholesterol variants,
outside ABCG5/8 and NPC1L1 loci

GRS-ABCG5/8

Non-HDL cholesterol variants

GRS-NPC1L1

Non-HDL cholesterol variants

Cases/controls OR 95% CI P
Iceland 19074/124037 147  (137,159) 13 x 102
Denmark 33 603/148707 164  (1.54,1.75) 73 x 10
UK Biobank 32 867/375 698  1.51 (145,158) 33 x10%
Combined 85544/648442 154  (149,159) 1.1 x 10"*

GRS-ABCG5/8 vs. GRS-other
GRS-NPC1L1 vs. GRS-other

at ABCG5/8 locus at NPC1L1 locus

OR  95%Cl P OR  95%ClI P

196  (1.48,258) 20x10° 189  (1.18,301)  0.0079

230 (1.63,326) 25x10° 294  (173,500) 72 x10°

196 (163,235 49x10™ 164  (1.13,237) 00087

201 (175,231) 98x 102 195  (1.51,252) 2.6 x 107
Ppet (for difference in effects on CAD)
24 x 107
0.067

The effects on CAD are given per 1 mmol/L of genetically elevated non-HDL cholesterol levels.
CAD, coronary artery disease; Cl, confidence interval; GRS, genetic risk score; HDL, high-density lipoprotein; OR, odds ratio.

Phet: P-value for heterogeneity in effects.

Association with coronary artery disease
is not fully explained by non-high density
lipoprotein cholesterol

We then explored whether ABCG5/8 impacts the risk of CAD be-
yond what is expected by their effect on non-HDL cholesterol. We
constructed 2 GRS for non-HDL cholesterol, one using ABCG5/8 var-
iants (GRS-ABCG5/8) and another using reported variants outside the
ABCG5/8 locus (GRS-other) (Supplementary material online, Methods,

Table S7 and $8) and compared their effects on CAD in 85 544 cases
and 648 442 controls/non-CAD cases from Iceland, Denmark, and
UK Biobank (Table 3). NPC1L1 variants were not included in these
GRSs. We scaled the units of the GRSs to mmol/L of non-HDL chol-
esterol and the odds ratios (OR) for CAD are calculated per
1mmol/L of the genetically predicted increase in non-HDL choles-
terol. The ABCG5/8 GRS associates with double the risk of CAD for a
1mmol increase in non-HDL cholesterol (OR 2.01, 95% Cl 1.75-
2.31; P=9.8 x 103, Table 3) compared with a 54% increase in CAD
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Genetic variability in intestinal cholesterol and phytosterol absorption affects cardiovascular disease risk
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Intestinal absorption of dietary cholesterol
and phytosterols is regulated by NPC1L1 and ABCG5/8
transporters

Genetic variants that decrease function of the ABCG5/8
transporter increase uptake of both cholesterol and
phytosterols into the circulation and increase the risk of CAD

The risk of CAD conferred by ABCG5/8 variants is significantly
greater than expected by their effect on non-HDL cholesterol
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* 62% of the effect of on CAD can be explained by non-

38% has to be explained by other mechanisms

HDL cholesterol

- phytosterols are plausible atherogenic candidates

Take home figure Genetic analysis using ABCG5/8 variants as instruments indicates that both dietary cholesterol and phytosterols contribute

directly to atherogenesis.

risk for GRS-other (OR = 1.54, 95% Cl 1.49-159; P=1.1x 107">* P
for difference in effects = 2.4 x 10°*). This greater effect of the GRS-
ABCG5/8 on CAD indicates that there are atherogenic effects of
ABCG5/8 variants that are not mediated through non-HDL
cholesterol.

For comparison, we examined the association of a GRS based on
four NPCTL1 variants with CAD. Although the results for GRS-
NPC1L1 were similar to GRS-ABCG5/8, there were fewer variants be-
hind this risk score than for the GRS-ABCG5/8 resulting in less accur-
ate CAD risk estimate. The CAD risk conferred by NPCTL1 variants
was not significantly different from that expected by non-HDL chol-
esterol variants at other loci (P = 0.067) (Table 3).

Association with gallstones and

haematologic traits

Since the ABCG5/8 transporter is known to affect biliary cholesterol
secretion and gallstone formation, we tested the 35 rare coding and
3 common variants for association with gallstone risk in a meta-
analysis including data from Iceland and the UK Biobank (27 441 cases
and 738 791 controls). We identified associations between eight rare
coding variants and gallstones (P< 1.4 x 10 = 0.05/35) and repli-
cated the association of the common variants”'® (Table 1 and
Supplementary material online, Table $9). We note that among eight
rare variants that associate with gallstone risk, six also associate with
non-HDL cholesterol, with the non-HDL cholesterol increasing
alleles consistently associating with lower risk of gallstones (Table 7).
However, we do not observe a clear dose—response relationship

between variant effects on non-HDL cholesterol and on gallstones
(Table 1 and Supplementary material online, Table $9).

Because of the reported macrothrombocytopenia and haemolytic
anaemia in some phytosterolaemia patients,’ we tested ABCG5/8 var-
jants for association with platelet traits and haemoglobin
(Supplementary material online, Table S$10). The three common
variants associate with mean platelet volume (rs4299376:
P=25x10"% p. Asp19His: P=1.7 x 10, p. Thrd00Lys: P=1.9
x 10 and with haemoglobin levels (rs4299376: P=0.030, p.
Asp19His: P=3.2 x 108, p. Thr400Lys: P= 3.3 x 10°*). Furthermore,
the rare variant p. His250Tyr that has the largest effect on phytos-
terol levels, associates with greater mean platelet volume
(P=5.7 x 103). The directions of the effects on platelet size and
haemoglobin levels are consistent with those reported in phytostero-
laemia (Supplementary material online, Table S10).

Discussion

We identified several rare ABCG5/8 coding variants with substantial
impact on circulating levels of non-HDL cholesterol and phytoster-
ols, and demonstrate that heterozygous carriers are at increased risk
of CAD and other CVD (Take home figure).

The role of dietary cholesterol absorption in the regulation of cir-
culating cholesterol and subsequent CVD is debated.”® We show
that for variants at the ABCG5/8 locus, the effect on non-HDL choles-
terol is highly correlated (R2 = 0.97) with the effect on phytosterols
that are only derived from the diet. This is consistent with the
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common mechanism of intestinal absorption of cholesterol and phy-
tosterols, regulated by NPC1L1 and ABCG5/8 sterol transporters.
Indeed, phytosterol levels are frequently used as surrogate markers
of intestinal cholesterol absorption.26 Thus, the results indicate that
increased intestinal absorption has a major contribution to the levels
of cholesterol, although cholesterol removal through the liver may
also play a role. However, less consistent relationship between vari-
ant effects on non-HDL cholesterol and on the formation of gall-
stones, a marker of cholesterol efflux to bile,27 suggests a smaller role
for this mechanism. Furthermore, in carriers of the ABCG5/8 variants
that associate with increased non-HDL cholesterol less cholesterol
from the enterohepatic circulation is expected to be within the gut
than in non-carriers since these variants associate with less secretion
of cholesterol to bile. This suggests that the ABCG5/8 variants affect
cholesterol levels in blood, mainly through regulation of dietary chol-
esterol absorption. Our findings thus provide mechanistic insights
into how dietary cholesterol may affect CVD. A cautious view to-
wards dietary cholesterol is also proposed by a recent large observa-
tional study, finding that higher consumption of dietary cholesterol
associates with incident CVD and all-cause mortality in a dose-
dependent manner.?® In line with what other studies have suggested
(reviewed in Ref.?%), our results support the opinion that ‘high choles-
terol absorbers’ might benefit in particular from moderation in chol-
esterol intake and ezetimibe treatment.

The role of phytosterols in atherosclerotic disease is a matter
of an ongoing dispute.”®* We demonstrate that the degree of
CAD risk conferred by ABCG5/8 variants is greater than predicted
by their effect on non-HDL cholesterol levels. Based on the effect
of non-HDL cholesterol variants in other genes than ABCG5/8 and
NPC1LT as reflected in GRS-other, non-HDL cholesterol can only
explain around 62% of the CAD risk inferred from effect of var-
iants in GRS-ABCG5/8 on CAD, the remaining 38% must be due
to other mechanisms. The excess risk is unlikely driven through
other traditional risk factors for CAD since the ABCG5/8 variants
do not associate with them. In contrast, the rare and common
ABCG5/8 variants have a consistent close relationship with phytos-
terol levels, making elevated phytosterol levels a plausible explan-
ation for the excess CAD risk. The chemical relatedness to
cholesterol also makes phytosterols credible atherogenic candi-
dates. Evidence from humans with phytosterolaemia, from animal
studies, and in vitro experiments further support atherogenic effect
of phytosterols.>*%3"

While our results indicate that genetic susceptibility to high ab-
sorption of cholesterol and phytosterols increases the risk of CAD,
the total and relative amount of these dietary components in the gut
may also play a role in the net absorption. Thus, high intakes may in-
crease absorption because of more availability. However, phytoster-
ols in the diet may also reduce intraluminal availability of cholesterol,
through physicochemical interferance.”’

While our findings raise concerns about the safety of phytosterol-
supplemented food, given their propensity to raise phytosterol levels
in blood,?" harmful effects of phytosterol supplementation cannot be
concluded based on our data. Ultimately, it needs to be established in
clinical trials whether the non-HDL/LDL cholesterol-lowering effects
of phytosterol-supplemented food products truly lower cardiovascu-
lar risk, or whether swapping the cholesterol with another athero-
genic lipid might override this effect, or possibly increase risk.

The main limitation to our study is that we cannot demonstrate
directly the dietary origin of the non-HDL cholesterol in blood.
Neither was our study equipped to address the effects of various
proportions of cholesterol and phytosterols in diet on the amount
absorbed, or on the effect on CVD.

In conclusion, we used genetics to demonstrate a role of dietary
cholesterol in the regulation of non-HDL cholesterol levels and the
risk of CVD. Furthermore, other dietary sterols such as phytosterols
may contribute directly to atherogenesis.

Supplementary material

Supplementary material is available at European Heart Journal online.
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CARDIOVASCULAR FLASHLIGHT

Choriocarcinoma metastasis in the left atrium
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A 36-year-old woman was trans-
ferred to our hospital with dizzi-
ness and headache for 10 days and
had left-side hemiparesis for 1 day.
Head computed tomography sug-
gested multiple intracerebral hae-
Digital
angiography showed that the right
internal  carotid artery was
occluded (Panel A, Video S1).
During angiography, a mass in the
right lung was observed by acci-
dent (Panel B). Chest-enhanced
computed tomography revealed a

morrhages. subtraction

solid 35-mm x 32-mm mass in the
right lung with intermediate bron-
chus  stenosis  (Panel Q).
Additionally, the left atrium and
pulmonary vein showed tumour
invasion (Panels C and D). The
patient had no respiratory system
symptoms. However, she com-
plained of a 6-month history of
irregular vaginal bleeding after full-
term delivery of a baby. Blood
tests revealed a P-human cho-
rionic gonadotropin (HCG) con-
centration of 3.5x 10° mlU/mL
but vaginal ultrasound suggested
no abnormalities.

On the basis of the patient’s history of irregular vaginal bleeding after delivery, level of B-HCG, right lung mass and multiple intracerebral
haemorrhages, the diagnosis of choriocarcinoma with lung and brain metastasis was made. The diagnosis was confirmed by pathological
assessment of the chest tumour biopsy (Panel E). Immunohistochemical analysis showed positivity for HCG (Panel F). This diagnosis indi-
cated that the cause of the right internal carotid artery occlusion was tumour embolism.

Choriocarcinoma is a rare and aggressive gynaecological cancer. Early diagnosis and chemotherapy lead to a high long-term survival rate.
The main treatment of cases presenting with a cardiac intracavitary mass is surgery to prevent organ embolization.

Supplementary material is available at European Heart Journal online.
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