515 research outputs found

    Ionization toward the high-mass star-forming region NGC 6334 I

    Get PDF
    Context. Ionization plays a central role in the gas-phase chemistry of molecular clouds. Since ions are coupled with magnetic fields, which can in turn counteract gravitational collapse, it is of paramount importance to measure their abundance in star-forming regions. Aims. We use spectral line observations of the high-mass star-forming region NGC 6334 I to derive the abundance of two of the most abundant molecular ions, HCO+ and N2H+, and consequently, the cosmic ray ionization rate. In addition, the line profiles provide information about the kinematics of this region. Methods. We present high-resolution spectral line observations conducted with the HIFI instrument on board the Herschel Space Observatory of the rotational transitions with Jup > 5 of the molecular species C17O, C18O, HCO+, H13CO+, and N2H+. Results. The HCO+ and N2H+ line profiles display a redshifted asymmetry consistent with a region of expanding gas. We identify two emission components in the spectra, each with a different excitation, associated with the envelope of NGC 6334 I. The physical parameters obtained for the envelope are in agreement with previous models of the radial structure of NGC 6334 I based on submillimeter continuum observations. Based on our new Herschel/HIFI observations, combined with the predictions from a chemical model, we derive a cosmic ray ionization rate that is an order of magnitude higher than the canonical value of 10^(-17) s-1. Conclusions. We find evidence of an expansion of the envelope surrounding the hot core of NGC 6334 I, which is mainly driven by thermal pressure from the hot ionized gas in the region. The ionization rate seems to be dominated by cosmic rays originating from outside the source, although X-ray emission from the NGC 6334 I core could contribute to the ionization in the inner part of the envelope.Comment: This paper contains a total of 10 figures and 3 table

    Breaking the Redshift Deadlock - I: Constraining the star formation history of galaxies with sub-millimetre photometric redshifts

    Full text link
    Future extragalactic sub-millimetre and millimetre surveys have the potential to provide a sensitive census of the level of obscured star formation in galaxies at all redshifts. While in general there is good agreement between the source counts from existing SCUBA (850um) and MAMBO (1.25mm) surveys of different depths and areas, it remains difficult to determine the redshift distribution and bolometric luminosities of the sub-millimetre and millimetre galaxy population. This is principally due to the ambiguity in identifying an individual sub-millimetre source with its optical, IR or radio counterpart which, in turn, prevents a confident measurement of the spectroscopic redshift. Additionally, the lack of data measuring the rest-frame FIR spectral peak of the sub-millimetre galaxies gives rise to poor constraints on their rest-frame FIR luminosities and star formation rates. In this paper we describe Monte-Carlo simulations of ground-based, balloon-borne and satellite sub-millimetre surveys that demonstrate how the rest-frame FIR-sub-millimetre spectral energy distributions (250-850um) can be used to derive photometric redshifts with an r.m.s accuracy of +/- 0.4 over the range 0 < z < 6. This opportunity to break the redshift deadlock will provide an estimate of the global star formation history for luminous optically-obscured galaxies [L(FIR) > 3 x 10^12 Lsun] with an accuracy of 20 per cent.Comment: 14 pages, 22 figures, submitted to MNRAS, replaced with accepted versio

    A spectral line survey of the starless and proto-stellar cores detected by BLAST toward the Vela-D molecular cloud

    Full text link
    We present a 3-mm and 1.3-cm spectral line survey conducted with the Mopra 22-m and Parkes 64-m radio telescopes of a sample of 40 cold dust cores, previously observed with BLAST, including both starless and proto-stellar sources. 20 objects were also mapped using molecular tracers of dense gas. To trace the dense gas we used the molecular species NH3, N2H+, HNC, HCO+, H13CO+, HCN and H13CN, where some of them trace the more quiescent gas, while others are sensitive to more dynamical processes. The selected cores have a wide variety of morphological types and also show physical and chemical variations, which may be associated to different evolutionary phases. We find evidence of systematic motions in both starless and proto-stellar cores and we detect line wings in many of the proto-stellar cores. Our observations probe linear distances in the sources >~0.1pc, and are thus sensitive mainly to molecular gas in the envelope of the cores. In this region we do find that, for example, the radial profile of the N2H+(1-0) emission falls off more quickly than that of C-bearing molecules such as HNC(1-0), HCO+(1-0) and HCN(1-0). We also analyze the correlation between several physical and chemical parameters and the dynamics of the cores. Depending on the assumptions made to estimate the virial mass, we find that many starless cores have masses below the self-gravitating threshold, whereas most of the proto-stellar cores have masses which are near or above the self-gravitating critical value. An analysis of the median properties of the starless and proto-stellar cores suggests that the transition from the pre- to the proto-stellar phase is relatively fast, leaving the core envelopes with almost unchanged physical parameters.Comment: Submitted for publication to Astronomy & Astrophysics on January 18th, 201

    Reverberation of pulsar wind nebulae (I): Impact of the medium properties and other parameters upon the extent of the compression

    Full text link
    The standard approach to the long term evolution of pulsar wind nebulae (PWNe) is based on one-zone models treating the nebula as a uniform system. In particular for the late phase of evolved systems, many of the generally used prescriptions are based on educated guesses for which a proper assessment lacks. Using an advanced radiative code we evaluate the systematic impact of various parameters, like the properties of the supernova ejecta, of the inner pulsar, as well of the ambient medium, upon the extent of the reverberation phase of PWNe. We investigate how different prescriptions shift the starting time of the reverberation phase, how this affects the amount of the compression, and how much of this can be ascribable to the radiation processes. Some critical aspects are the description of the reverse shock evolution, the efficiency by which at later times material from the ejecta accretes onto the swept-up shell around the PWN, and finally the density, velocity and pressure profiles in the surrounding supernova remnant. We have explicitly treated the cases of the Crab Nebula, and of J1834.9--0846, taken to be representatives of the more and the less energetic pulsars, respectively. Especially for the latter object the prediction of large compression factors is confirmed, even larger in the presence of radiative losses, also confirming our former prediction of periods of super-efficiency during the reverberation phase of some PWNe.Comment: 12 pages, 7 figures, accepted for publication in MNRA

    A new Classical T Tauri object at the sub-stellar boundary in Chamaeleon II

    Full text link
    We have obtained low- and medium-resolution optical spectra of 20 candidate young low-mass stars and brown dwarfs in the nearby Chamaeleon II dark cloud, using the Magellan Baade telescope. We analyze these data in conjunction with near-infrared photometry from the 2-Micron All Sky Survey. We find that one target, [VCE2001] C41, exhibits broad H(alpha) emission as well as a variety of forbidden emission lines. These signatures are usually associated with accretion and outflow in young stars and brown dwarfs. Our spectra of C41 also reveal LiI in absorption and allow us to derive a spectral type of M5.5 for it. Therefore, we propose that C41 is a classical T Tauri object near the sub-stellar boundary. Thirteen other targets in our sample have continuum spectra without intrinsic absorption or emission features, and are difficult to characterize. They may be background giants or foreground field stars not associated with the cloud or embedded protostars, and need further investigation. The six remaining candidates, with moderate reddening, are likely to be older field dwarfs, given their spectral types, lack of lithium and H(alpha).Comment: Astrophysical Journal, accepted June 19, 200

    Dynamics of fully coupled rotators with unimodal and bimodal frequency distribution

    Full text link
    We analyze the synchronization transition of a globally coupled network of N phase oscillators with inertia (rotators) whose natural frequencies are unimodally or bimodally distributed. In the unimodal case, the system exhibits a discontinuous hysteretic transition from an incoherent to a partially synchronized (PS) state. For sufficiently large inertia, the system reveals the coexistence of a PS state and of a standing wave (SW) solution. In the bimodal case, the hysteretic synchronization transition involves several states. Namely, the system becomes coherent passing through traveling waves (TWs), SWs and finally arriving to a PS regime. The transition to the PS state from the SW occurs always at the same coupling, independently of the system size, while its value increases linearly with the inertia. On the other hand the critical coupling required to observe TWs and SWs increases with N suggesting that in the thermodynamic limit the transition from incoherence to PS will occur without any intermediate states. Finally a linear stability analysis reveals that the system is hysteretic not only at the level of macroscopic indicators, but also microscopically as verified by measuring the maximal Lyapunov exponent.Comment: 22 pages, 11 figures, contribution for the book: Control of Self-Organizing Nonlinear Systems, Springer Series in Energetics, eds E. Schoell, S.H.L. Klapp, P. Hoeve

    Discovery of weak 6.7-GHz CH3OH masers in a sample of high-mass Hi-GAL sources

    Full text link
    Maser lines from different molecular species, including water, hydroxyl, and methanol, are common observational phenomena associated with massive star forming regions. In particular, the methanol maser appears as an ideal tool to study the early phases of massive star formation. However, it is difficult to establish the exact start of the methanol maser phase, and it would then be interesting to detect and study low-flux density methanol masers (i.e., < 0.1 Jy or even << 0.1 Jy), in order to determine if they can effectively be used to mark a specific evolutionary phase in high-mass star formation. Past surveys have been unable to systematically detect many low-flux density methanol masers, and thus we do not yet know how many such masers exist in the Galaxy and what is their physical nature. Out of a sample of 107 observed Hi-GAL sources we detected a total of 32 methanol masers, with 22 sources being new and weak (median peak flux density 0.07 Jy) detections, in the Galactic longitude range [32.0, 59.8]deg. We also detected 12 6.035-GHz OH maser, with 9 objects being new detections. Our survey covers a similar range of source distances as the "Arecibo Methanol Maser Galactic Plane Survey", but the methanol masers detected by us are clearly shifted towards lower integrated flux densities. The newly detected methanol masers are mostly of low-luminosity and, except for some sources, their weakness is not due to distance effects or positional offsets. No specific correlation is found with the physical parameters of the Hi-GAL clumps, except for sources with both CH3OH and OH masers which tend to have higher mass and luminosity. The intensity of the methanol masers correlates well with the velocity range of the maser emission, which suggests that the low brightness of these masers is related to the number of maser spots in the emitting region and their evolution with time.Comment: This paper contains a total of 14 figures and 7 tables. Submitted for publication to A&A on November 4th, 201

    A Search for H2CO 6cm Emission toward Young Stellar Objects III: VLA Observations

    Full text link
    We report the results of our third survey for formaldehyde (H2CO) 6cm maser emission in the Galaxy. Using the Very Large Array, we detected two new H2CO maser sources (G23.01-0.41 and G25.83-0.18), thus increasing the sample of known H2CO maser regions in the Galaxy to seven. We review the characteristics of the G23.01-0.41 and G25.83-0.18 star forming regions. The H2CO masers in G23.01-0.41 and G25.83-0.18 share several properties with the other known H2CO masers, in particular, emission from rich maser environments and close proximity to very young massive stellar objects.Comment: Accepted for publication in the Astrophysical Journal Supplement Serie

    SANEPIC: A Map-Making Method for Timestream Data From Large Arrays

    Get PDF
    We describe a map-making method which we have developed for the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) experiment, but which should have general application to data from other submillimeter arrays. Our method uses a Maximum Likelihood based approach, with several approximations, which allows images to be constructed using large amounts of data with fairly modest computer memory and processing requirements. This new approach, Signal And Noise Estimation Procedure Including Correlations (SANEPIC), builds upon several previous methods, but focuses specifically on the regime where there is a large number of detectors sampling the same map of the sky, and explicitly allowing for the the possibility of strong correlations between the detector timestreams. We provide real and simulated examples of how well this method performs compared with more simplistic map-makers based on filtering. We discuss two separate implementations of SANEPIC: a brute-force approach, in which the inverse pixel-pixel covariance matrix is computed; and an iterative approach, which is much more efficient for large maps. SANEPIC has been successfully used to produce maps using data from the 2005 BLAST flight.Comment: 27 Pages, 15 figures; Submitted to the Astrophysical Journal; related results available at http://blastexperiment.info/ [the BLAST Webpage

    Mass Flows in Cometary UCHII Regions

    Full text link
    High spectral and spatial resolution, mid-infrared fine structure line observations toward two ultracompact HII (UCHII) regions (G29.96 -0.02 and Mon R2) allow us to study the structure and kinematics of cometary UCHII regions. In our earlier study of Mon R2, we showed that highly organized mass motions accounted for most of the velocity structure in that UCHII region. In this work, we show that the kinematics in both Mon R2 and G29.96 are consistent with motion along an approximately paraboloidal shell. We model the velocity structure seen in our mapping data and test the stellar wind bow shock model for such paraboloidal like flows. The observations and the simulation indicate that the ram pressures of the stellar wind and ambient interstellar medium cause the accumulated mass in the bow shock to flow along the surface of the shock. A relaxation code reproduces the mass flow's velocity structure as derived by the analytical solution. It further predicts that the pressure gradient along the flow can accelerate ionized gas to a speed higher than that of the moving star. In the original bow shock model, the star speed relative to the ambient medium was considered to be the exit speed of ionized gas in the shell.Comment: 34 pages, including 14 figures and 1 table, to be published in ApJ, September 200
    corecore