242 research outputs found

    Perchlorate Contamination: Sources, Effects, and Technologies for Remediation

    Get PDF
    Perchlorate is a persistent pollutant, generated via natural and anthropo genic processes, that possesses a high potential for endocrine disruption in humans and biota. It inhibits iodine fixation, a major reason for eliminating this pollutant from ecosystems. Remediation of perchlorate can be achieved with various physi cochemical treatments, especially at low concentrations. However, microbiological approaches using microorganisms, such as those from the genera Dechloromonas, Serratia, Propionivibrio, Wolinella, and Azospirillum, are promising when perchlo rate pollution is extensive. Perchlorate-reducing bacteria, isolated from harsh Perchlorate is a persistent pollutant, generated via natural and anthropo genic processes, that possesses a high potential for endocrine disruption in humans and biota. It inhibits iodine fixation, a major reason for eliminating this pollutant from ecosystems. Remediation of perchlorate can be achieved with various physi cochemical treatments, especially at low concentrations. However, microbiological approaches using microorganisms, such as those from the genera Dechloromonas, Serratia, Propionivibrio, Wolinella, and Azospirillum, are promising when perchlo rate pollution is extensive. Perchlorate-reducing bacteria, isolated from hars

    Perfil toxicológico de los sedimientos del río Magdalena usando como modelo biológico "Caenorhabditis elegans"

    Get PDF
    160 páginasPremio de Estudios Iberoamericanos Grupo La Rábida (2015). Área Científico-Técnica. El río Magdalena, atraviesa Colombia y desemboca en el mar Caribe, siendo el sumidero de aguas residuales e industriales a lo largo de su recorrido. Estos vertidos de diversas características, contienen contaminantes que por sus propiedades fisicoquímicas permanecen en los sedimentos, donde son incorporados al plancton, entrando en la cadena alimenticia en procesos de bioacumulación y biomagnificación, ocasionando considerables problemas de toxicidad en todos los niveles tróficos. En esta investigación fue empleado el nemátodo Caenorhabditis elegans como modelo biológico para la evaluación toxicológica de los sedimentos de este cuerpo de agua

    Direct effect of p,p'- DDT on mice liver

    Get PDF
    Contact with the pesticide dichlorodiphenyltrichloroethane (p,p′-DDT) can be the cause of various harmful effects in humans, wildlife, and the environment. This pesticide is known to be persistent, lipophilic, resistant to degradation, and bioaccumulive in the environment and to be slowly released into bloodstream. Growing evidence shows that exposure to DDT is linked to type 2 diabetes mellitus. Individuals exposed to elevated levels of DDT and its metabolite have an increased prevalence of diabetes and insulin resistance. To evaluate these possible relationships, experiments were performed on eight-week-old female mice, divided into three groups (n = 10 per group): Group 1 received a vehicle-control intraperitoneal (i.p.) injection of sesame oil; Groups 2 and 3 received an i.p. dose of 50 and 100 µg/g p,p′-DDT respectively, dissolved in sesame oil. All groups were treated once daily for four days. Real-time PCR analysis of several genes was undertaken. Additionally, biochemical parameters and histopathological changes were measured. NQO1, HMOX1, NR1I3 and NR3C1 were up-regulated in DDT-exposed animals compared to the vehicle control group, while only SREBP1 was down-regulated in the 100 µg/g group. MTTP and FABP5, not previously reported for DDT exposure, but involved in regulation of fatty acid fluxes, could also function as biomarkers cross-talking between these signaling pathways. These results suggest that beyond epidemiological data, there is increasing molecular evidence that DDT may mimic different processes involved in diabetes and insulin resistance pathways.O contato com o praguicida diclorodifeniltricloroetano (p, p'-DDT) pode ser a causa de vários efeitos nocivos sobre os seres humanos, animais silvestres e o meio ambiente. Sabe-se de sua característica de bioacumulação, ser altamente persistente no meio ambiente, lipofílico, resistente à degradação e lentamente liberado na corrente sanguínea. Existe uma evidência crescente de que a exposição ao DDT pode ser ligada a Diabetes mellitus tipo 2. Os indivíduos expostos a níveis elevados de DDT e seu metabólito apresentam maior prevalência de diabetes e resistência à insulina. A fim de obter informações sobre essas possíveis relações, camundongos fêmeas de oito semanas de idade foram divididos em três grupos (n = 10 por grupo): Grupo 1 recebeu um veículo de óleo de gergelim via i.p.; os Grupos 2 e 3 receberam, via i.p., 50 e 100 µg/g de p, p'-DDT, respectivamente, dissolvidos em óleo de gergelim. Todos os grupos foram tratados uma vez ao dia durante quatro dias. Além da análise de PCR em Tempo Real de vários genes, os parâmetros bioquímicos e alterações histopatológicas também foram medidos. A expressão gênica do mRNA dos genes NQO1, HMOX1, NR1I3 e NR3C1 foi maior nos animais expostos ao DDT, em comparação ao grupo controle, enquanto a expressão gênica do SREBP1 diminuiu na concentração de 100 µg/g. Os genes MTTP e FABP5 envolvidos na regulação do fluxo de ácidos graxos, embora não estudados quanto à exposição ao DDT, também podem funcionar como biomarcadores de resposta cruzada entre essas vias de sinalização. Esses resultados sugerem que, além de dados epidemiológicos, há cada vez mais evidências moleculares de que o DDT poderia, de fato, imitar diferentes processos que envolvem as rotas de diabetes e de resistência à insulina

    NEW AGENTS WITH POTENTIAL LEISHMANICIDAL ACTIVITY IDENTIFIED BY VIRTUAL SCREENING OF CHEMICAL DATABASES

    Get PDF
    RESUMEN Leishmaniosis, una enfermedad causada por un parásito protozoario, representa un serio problema de salud pública que amenaza a cerca de 350 millones de personas alrededor del mundo, de los cuales se cree que unos 12 millones se encuentran actualmente infectados (WHO 2010). A la fecha no existen vacunas contra las especies del parásito y el tratamiento está basado solo en la quimioterapia con medicamentos  tóxicos, costosos, e  inefcientes. Existe una necesidad urgente por mejores medicamentos contra Leishmania, el agente etiológico de la enfermedad. El principal medicamento en Colombia usado contra la leishmaniosis es el antimoniato de meglumine [nombre químico según los parámetrosde la International Union of Pure and Applied Chemistry (IUPAC): Hydroxy-dioxostiborane; (2R,3R,4R,5S)-6-methylaminohexane-1,2,3,4,5-pentol, (C7H17NO5)], el cual no es efciente en el tratamiento de infecciones causadas por Leishmania braziliensis, la especie más prevalente en la costa Caribe de Colombia. Métodos: En este trabajo efectuamos un tamizaje virtual in silico de varias bases de datos incluyendo ChemBridge y  Pubchem.  Con  el  objetivo  de  identifcar  nuevos  inhibidores,  un  total  de  28.755  compuestos  fueron tamizados virtualmente contra un modelo 3D de la enzima 6-phosphoglucono –lactonase (6-PGL) de Leishmania braziliensis. El acoplamiento molecular de las bases de datos se efectuó con el programa Sybyl 8.0 y AutoDock Vina. Resultados: mediante  tamizaje virtual basado  en  la  estructura  se  identifcaron10 compuestos,  los  cuales  fueron posteriormente  evaluados  con AutodockVina y  clasifcados de  acuerdo  a los puntajes de acoplamiento. Conclusiones: Estos nuevos potenciales inhibidores constituyen candidatos a  medicamentos  que  deben  ser  evaluados  biológicamente  para  defnir  su  valor  como  alternativas quimioterapéuticas en el tratamiento de estas infecciones parasíticas. Palabras clave: leishmaniosis, tamizaje virtual, terapéutico, biblioteca virtual, base de datos. NEW AGENTS WITH POTENTIAL LEISHMANICIDAL ACTIVITY IDENTIFED BY VIRTUAL SCREENING OF CHEMICAL DATABASES ABSTRACT Leishmaniosis, a disease caused by a protozoan parasite, remains a serious public health problem threatening about 350 million people around the world, of which 12 million are believed to be currently infected (WHO 2010). To date, there are no vaccines against the species of parasites and the treatment is based only on chemotherapy with toxic-, expensive- and ineffcient- drugs. There is an urgent need for better drugs against  Leishmania, the etiological agent of the disease. The main anti-leishmanial drug used in Colombia is meglumineantimoniate [chemical name according to the International Union of Pure and Applied Chemistry (IUPAC): Hydroxy-dioxostiborane; (2R,3R,4R,5S)-6-methylaminohexane-1,2,3,4,5-pentol, (C7H17NO5)], which  is not effcient  in  the  treatment of  infections caused by Leishmania braziliensis, the most prevalent specie in the Caribbean coast of Colombia. Methods: We performed an  in silico virtual screening of several datasets including ChemBridge and Pubchem. We virtually screened a total of 28.755 compounds against a 3D model of 6-phosphoglucono -lactonase (6-PGL) from Leishmania braziliensis to identify novel inhibitors.Molecular docking of databases was performed using the software Sybyl 8.0 and AutoDockVina. Results: The initial virtual screening using a structure-based method identifed 10 compounds, which were later tested with AutodockVina and classifed according to their docking scores. Conclusions: These novel and potential inhibitors constitute new drug candidates that must be biologically tested to defne their value as an alternative chemotherapeutic agent in the treatment of these protozoan infections. Key words: leishmaniosis, virtual screening, therapeutics, molecular docking simulation, drug search

    Second Life: una plataforma ideal para la química virtual

    Get PDF
    Second Life es quizás hoy en día el más popular ambiente 3D simulado en línea, gracias a las posibilidades de interacción entre simulaciones y videojuegos y a la creación de redes sociales de colaboración donde se comparte cualquier tipo de conocimiento. Este artículo introduce la plataforma virtual Second Life y su potencial como herramienta educacional, investigativa y de publicación abierta en las ciencias, con énfasis en química. Se describen algunas herramientas emergentes del uso de Second Life en la enseñanza de química, además del creciente interés y participación de organizaciones, empresas y científicos en el área de química, lo que ofrecen en SL y como ubicarlos en este mundo virtual

    NEW AGENTS WITH POTENTIAL LEISHMANICIDAL ACTIVITY IDENTIFIED BY VIRTUAL SCREENING OF CHEMICAL DATABASES

    Get PDF
    RESUMEN Leishmaniosis, una enfermedad causada por un parásito protozoario, representa un serio problema de salud pública que amenaza a cerca de 350 millones de personas alrededor del mundo, de los cuales se cree que unos 12 millones se encuentran actualmente infectados (WHO 2010). A la fecha no existen vacunas contra las especies del parásito y el tratamiento está basado solo en la quimioterapia con medicamentos  tóxicos, costosos, e  inefcientes. Existe una necesidad urgente por mejores medicamentos contra Leishmania, el agente etiológico de la enfermedad. El principal medicamento en Colombia usado contra la leishmaniosis es el antimoniato de meglumine [nombre químico según los parámetrosde la International Union of Pure and Applied Chemistry (IUPAC): Hydroxy-dioxostiborane; (2R,3R,4R,5S)-6-methylaminohexane-1,2,3,4,5-pentol, (C7H17NO5)], el cual no es efciente en el tratamiento de infecciones causadas por Leishmania braziliensis, la especie más prevalente en la costa Caribe de Colombia. Métodos: En este trabajo efectuamos un tamizaje virtual in silico de varias bases de datos incluyendo ChemBridge y  Pubchem.  Con  el  objetivo  de  identifcar  nuevos  inhibidores,  un  total  de  28.755  compuestos  fueron tamizados virtualmente contra un modelo 3D de la enzima 6-phosphoglucono –lactonase (6-PGL) de Leishmania braziliensis. El acoplamiento molecular de las bases de datos se efectuó con el programa Sybyl 8.0 y AutoDock Vina. Resultados: mediante  tamizaje virtual basado  en  la  estructura  se  identifcaron10 compuestos,  los  cuales  fueron posteriormente  evaluados  con AutodockVina y  clasifcados de  acuerdo  a los puntajes de acoplamiento. Conclusiones: Estos nuevos potenciales inhibidores constituyen candidatos a  medicamentos  que  deben  ser  evaluados  biológicamente  para  defnir  su  valor  como  alternativas quimioterapéuticas en el tratamiento de estas infecciones parasíticas. Palabras clave: leishmaniosis, tamizaje virtual, terapéutico, biblioteca virtual, base de datos. NEW AGENTS WITH POTENTIAL LEISHMANICIDAL ACTIVITY IDENTIFED BY VIRTUAL SCREENING OF CHEMICAL DATABASES ABSTRACT Leishmaniosis, a disease caused by a protozoan parasite, remains a serious public health problem threatening about 350 million people around the world, of which 12 million are believed to be currently infected (WHO 2010). To date, there are no vaccines against the species of parasites and the treatment is based only on chemotherapy with toxic-, expensive- and ineffcient- drugs. There is an urgent need for better drugs against  Leishmania, the etiological agent of the disease. The main anti-leishmanial drug used in Colombia is meglumineantimoniate [chemical name according to the International Union of Pure and Applied Chemistry (IUPAC): Hydroxy-dioxostiborane; (2R,3R,4R,5S)-6-methylaminohexane-1,2,3,4,5-pentol, (C7H17NO5)], which  is not effcient  in  the  treatment of  infections caused by Leishmania braziliensis, the most prevalent specie in the Caribbean coast of Colombia. Methods: We performed an  in silico virtual screening of several datasets including ChemBridge and Pubchem. We virtually screened a total of 28.755 compounds against a 3D model of 6-phosphoglucono -lactonase (6-PGL) from Leishmania braziliensis to identify novel inhibitors.Molecular docking of databases was performed using the software Sybyl 8.0 and AutoDockVina. Results: The initial virtual screening using a structure-based method identifed 10 compounds, which were later tested with AutodockVina and classifed according to their docking scores. Conclusions: These novel and potential inhibitors constitute new drug candidates that must be biologically tested to defne their value as an alternative chemotherapeutic agent in the treatment of these protozoan infections. Key words: leishmaniosis, virtual screening, therapeutics, molecular docking simulation, drug search

    Perchlorate-Reducing Bacteria from Hypersaline Soils of the Colombian Caribbean

    Get PDF
    [EN] Perchlorate (ClO4¿) has several industrial applications and is frequently detected in environmental matrices at relevant concentrations to human health. Currently, perchlorate-degrading bacteria are promising strategies for bioremediation in polluted sites. The aim of this study was to isolate and characterize halophilic bacteria with the potential for perchlorate reduction. Ten bacterial strains were isolated from soils of Galerazamba-Bolivar, Manaure-Guajira, and Salamanca Island-Magdalena, Colombia. Isolates grew at concentrations up to 30% sodium chloride. The isolates tolerated pH variations ranging from 6.5 to 12.0 and perchlorate concentrations up to 10000¿mg/L. Perchlorate was degraded by these bacteria on percentages between 25 and 10. 16S rRNA gene sequence analysis indicated that the strains were phylogenetically related to Vibrio, Bacillus, Salinovibrio, Staphylococcus, and Nesiotobacter genera. In conclusion, halophilic-isolated bacteria from hypersaline soils of the Colombian Caribbean are promising resources for the bioremediation of perchlorate contamination.This research received support from the Vice Presidency of Research, University of Cartagena; and Colciencias-University of Cartagena (Grant: RC-758-2011/1107-521-29360).Acevedo-Barrios, R.; Bertel-Sevilla, A.; Alonso Molina, JL.; Olivero-Verbel, J. (2019). Perchlorate-Reducing Bacteria from Hypersaline Soils of the Colombian Caribbean. International Journal of Microbiology. 2019:1-13. https://doi.org/10.1155/2019/6981865S1132019Cole-Dai, J., Peterson, K. M., Kennedy, J. A., Cox, T. S., & Ferris, D. G. (2018). Evidence of Influence of Human Activities and Volcanic Eruptions on Environmental Perchlorate from a 300-Year Greenland Ice Core Record. Environmental Science & Technology, 52(15), 8373-8380. doi:10.1021/acs.est.8b01890Acevedo-Barrios, R., Sabater-Marco, C., & Olivero-Verbel, J. (2018). Ecotoxicological assessment of perchlorate using in vitro and in vivo assays. Environmental Science and Pollution Research, 25(14), 13697-13708. doi:10.1007/s11356-018-1565-6Maffini, M. V., Trasande, L., & Neltner, T. G. (2016). Perchlorate and Diet: Human Exposures, Risks, and Mitigation Strategies. Current Environmental Health Reports, 3(2), 107-117. doi:10.1007/s40572-016-0090-3Knight, B. A., Shields, B. M., He, X., Pearce, E. N., Braverman, L. E., Sturley, R., & Vaidya, B. (2018). Effect of perchlorate and thiocyanate exposure on thyroid function of pregnant women from South-West England: a cohort study. Thyroid Research, 11(1). doi:10.1186/s13044-018-0053-xSmith, P. N. (s. f.). The Ecotoxicology of Perchlorate in the Environment. Perchlorate, 153-168. doi:10.1007/0-387-31113-0_7Steinmaus, C., Pearl, M., Kharrazi, M., Blount, B. C., Miller, M. D., Pearce, E. N., … Liaw, J. (2016). Thyroid Hormones and Moderate Exposure to Perchlorate during Pregnancy in Women in Southern California. Environmental Health Perspectives, 124(6), 861-867. doi:10.1289/ehp.1409614Ghosh, A., Pakshirajan, K., Ghosh, P. K., & Sahoo, N. K. (2011). Perchlorate degradation using an indigenous microbial consortium predominantly Burkholderia sp. Journal of Hazardous Materials, 187(1-3), 133-139. doi:10.1016/j.jhazmat.2010.12.130Nerenberg, R., Rittmann, B. E., & Najm, I. (2002). Perchlorate reduction in a HYDROGEN-BASED MEMBRANE-BIOFILM REACTOR. Journal - American Water Works Association, 94(11), 103-114. doi:10.1002/j.1551-8833.2002.tb10234.xXu, J., & Logan, B. E. (2003). Measurement of chlorite dismutase activities in perchlorate respiring bacteria. Journal of Microbiological Methods, 54(2), 239-247. doi:10.1016/s0167-7012(03)00058-7Logan, B. E., Wu, J., & Unz, R. F. (2001). Biological Perchlorate Reduction in High-Salinity Solutions. Water Research, 35(12), 3034-3038. doi:10.1016/s0043-1354(01)00013-6Matsubara, T., Fujishima, K., Saltikov, C. W., Nakamura, S., & Rothschild, L. J. (2016). Earth analogues for past and future life on Mars: isolation of perchlorate resistant halophiles from Big Soda Lake. International Journal of Astrobiology, 16(3), 218-228. doi:10.1017/s1473550416000458Okeke, B. C., Giblin, T., & Frankenberger, W. T. (2002). Reduction of perchlorate and nitrate by salt tolerant bacteria. Environmental Pollution, 118(3), 357-363. doi:10.1016/s0269-7491(01)00288-3Vijaya Nadaraja, A., Gangadharan Puthiya Veetil, P., & Bhaskaran, K. (2012). Perchlorate reduction by an isolatedSerratia marcescensstrain under high salt and extreme pH. FEMS Microbiology Letters, 339(2), 117-121. doi:10.1111/1574-6968.12062Murray, C. W., & Bolger, P. (2014). Environmental Contaminants: Perchlorate. Encyclopedia of Food Safety, 337-341. doi:10.1016/b978-0-12-378612-8.00200-6Xu, J., Song, Y., Min, B., Steinberg, L., & Logan, B. E. (2003). Microbial Degradation of Perchlorate: Principles and Applications. Environmental Engineering Science, 20(5), 405-422. doi:10.1089/109287503768335904Wang, O., & Coates, J. (2017). Biotechnological Applications of Microbial (Per)chlorate Reduction. Microorganisms, 5(4), 76. doi:10.3390/microorganisms5040076Xiao, Y., & Roberts, D. J. (2013). Kinetics Analysis of a Salt-Tolerant Perchlorate-Reducing Bacterium: Effects of Sodium, Magnesium, and Nitrate. Environmental Science & Technology, 47(15), 8666-8673. doi:10.1021/es400835tNozawa-Inoue, M., Scow, K. M., & Rolston, D. E. (2005). Reduction of Perchlorate and Nitrate by Microbial Communities in Vadose Soil. Applied and Environmental Microbiology, 71(7), 3928-3934. doi:10.1128/aem.71.7.3928-3934.2005Shimkets, L. J., & Rafiee, H. (1990). CsgA, an extracellular protein essential for Myxococcus xanthus development. Journal of Bacteriology, 172(9), 5299-5306. doi:10.1128/jb.172.9.5299-5306.1990Acevedo-Barrios, R., Bertel-Sevilla, A., Alonso-Molina, J., & Olivero-Verbel, J. (2016). Perchlorate tolerant bacteria from saline environments at the Caribbean region of Colombia. Toxicology Letters, 259, S103. doi:10.1016/j.toxlet.2016.07.257Iizuka, T., Tokura, M., Jojima, Y., Hiraishi, A., Yamanaka, S., & Fudou, R. (2006). Enrichment and Phylogenetic Analysis of Moderately Thermophilic Myxobacteria from Hot Springs in Japan. Microbes and Environments, 21(3), 189-199. doi:10.1264/jsme2.21.189Wu, Z.-H., Jiang, D.-M., Li, P., & Li, Y.-Z. (2005). Exploring the diversity of myxobacteria in a soil niche by myxobacteria-specific primers and probes. Environmental Microbiology, 7(10), 1602-1610. doi:10.1111/j.1462-2920.2005.00852.xHuang, X. (1999). CAP3: A DNA Sequence Assembly Program. Genome Research, 9(9), 868-877. doi:10.1101/gr.9.9.868The neighbor-joining method: a new method for reconstructing phylogenetic trees. (1987). Molecular Biology and Evolution. doi:10.1093/oxfordjournals.molbev.a040454Felsenstein, J. (1981). Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal of Molecular Evolution, 17(6), 368-376. doi:10.1007/bf01734359Fitch, W. M. (1971). Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology. Systematic Biology, 20(4), 406-416. doi:10.1093/sysbio/20.4.406Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30(12), 2725-2729. doi:10.1093/molbev/mst197Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111-120. doi:10.1007/bf01731581Felsenstein, J. (1985). CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP. Evolution, 39(4), 783-791. doi:10.1111/j.1558-5646.1985.tb00420.xAlbuquerque, L., Tiago, I., Taborda, M., Nobre, M. F., Verissimo, A., & da Costa, M. S. (2008). Bacillus isabeliae sp. nov., a halophilic bacterium isolated from a sea salt evaporation pond. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 58(1), 226-230. doi:10.1099/ijs.0.65217-0Gholamian, F., Sheikh-Mohseni, M. A., & Salavati-Niasari, M. (2011). Highly selective determination of perchlorate by a novel potentiometric sensor based on a synthesized complex of copper. Materials Science and Engineering: C, 31(8), 1688-1691. doi:10.1016/j.msec.2011.07.017Donachie, S. P., Bowman, J. P., & Alam, M. (2006). Nesiotobacter exalbescens gen. nov., sp. nov., a moderately thermophilic alphaproteobacterium from an Hawaiian hypersaline lake. International Journal of Systematic and Evolutionary Microbiology, 56(3), 563-567. doi:10.1099/ijs.0.63440-0Ling, J., Zhang, G., Sun, H., Fan, Y., Ju, J., & Zhang, C. (2011). Isolation and characterization of a novel pyrene-degrading Bacillus vallismortis strain JY3A. Science of The Total Environment, 409(10), 1994-2000. doi:10.1016/j.scitotenv.2011.02.020Romano, I., Gambacorta, A., Lama, L., Nicolaus, B., & Giordano, A. (2005). Salinivibrio costicola subsp. alcaliphilus subsp. nov., a haloalkaliphilic aerobe from Campania Region (Italy). Systematic and Applied Microbiology, 28(1), 34-42. doi:10.1016/j.syapm.2004.10.001Ali Amoozegar, M., Zahra Fatemi, A., Reza Karbalaei-Heidari, H., & Reza Razavi, M. (2007). Production of an extracellular alkaline metalloprotease from a newly isolated, moderately halophile, Salinivibrio sp. strain AF-2004. Microbiological Research, 162(4), 369-377. doi:10.1016/j.micres.2006.02.007Dubert, J., Romalde, J. L., Prado, S., & Barja, J. L. (2016). Vibrio bivalvicida sp. nov., a novel larval pathogen for bivalve molluscs reared in a hatchery. Systematic and Applied Microbiology, 39(1), 8-13. doi:10.1016/j.syapm.2015.10.006Paek, J., Shin, J. H., Shin, Y., Park, I.-S., Kim, H., Kook, J.-K., … Chang, Y.-H. (2016). Vibrio injenensis sp. nov., isolated from human clinical specimens. Antonie van Leeuwenhoek, 110(1), 145-152. doi:10.1007/s10482-016-0810-6Kumar, P. S., Paulraj, M. G., Ignacimuthu, S., Al-Dhabi, N. A., & Sukumaran, D. (2017). IN VITRO ANTAGONISTIC ACTIVITY OF SOIL STREPTOMYCES COLLINUS DPR20 AGAINST BACTERIAL PATHOGENS. Journal of Microbiology, Biotechnology and Food Sciences, 7(3), 317-324. doi:10.15414/jmbfs.2017/18.7.3.317-324Bruce, R. A., Achenbach, L. A., & Coates, J. D. (1999). Reduction of (per)chlorate by a novel organism isolated from paper mill waste. Environmental Microbiology, 1(4), 319-329. doi:10.1046/j.1462-2920.1999.00042.xWaller, A. S., Cox, E. E., & Edwards, E. A. (2004). Perchlorate-reducing microorganisms isolated from contaminated sites. Environmental Microbiology, 6(5), 517-527. doi:10.1111/j.1462-2920.2004.00598.xChaudhuri, S. K., O’Connor, S. M., Gustavson, R. L., Achenbach, L. A., & Coates, J. D. (2002). Environmental Factors That Control Microbial Perchlorate Reduction. Applied and Environmental Microbiology, 68(9), 4425-4430. doi:10.1128/aem.68.9.4425-4430.2002Liebensteiner, M. G., Oosterkamp, M. J., & Stams, A. J. M. (2015). Microbial respiration with chlorine oxyanions: diversity and physiological and biochemical properties of chlorate- and perchlorate-reducing microorganisms. Annals of the New York Academy of Sciences, 1365(1), 59-72. doi:10.1111/nyas.12806Zhu, Y., Gao, N., Chu, W., Wang, S., & Xu, J. (2016). Bacterial reduction of highly concentrated perchlorate: Kinetics and influence of co-existing electron acceptors, temperature, pH and electron donors. Chemosphere, 148, 188-194. doi:10.1016/j.chemosphere.2015.10.130Giblin, T., & Frankenberger, W. T. (2001). Perchlorate and nitrate reductase activity in the perchlorate-respiring bacterium perclace. Microbiological Research, 156(4), 311-315. doi:10.1078/0944-5013-00111Sevda, S., Sreekishnan, T. R., Pous, N., Puig, S., & Pant, D. (2018). Bioelectroremediation of perchlorate and nitrate contaminated water: A review. Bioresource Technology, 255, 331-339. doi:10.1016/j.biortech.2018.02.005Wang, C., Lippincott, L., & Meng, X. (2008). Kinetics of biological perchlorate reduction and pH effect. Journal of Hazardous Materials, 153(1-2), 663-669. doi:10.1016/j.jhazmat.2007.09.01

    Nanotecnología aplicada a la medicina

    Get PDF
    La nanotecnología comprende la creación, manipulación y utilización de materiales en el orden nanométrico (10-9 m) y su aplicación en los campos de la química, la biología, la física, la ingeniería y en especial la medicina, se ha traducido en trascendentales avances en la ciencia. La hoy denominada nanomedicina ha comportado significativos adelantos en la monitorización, la reparación de tejidos, el diagnostico, el tratamiento y la prevención de enfermedades mediante el uso de herramientas como nanosensores, nanopartículas y nanotubos, y en el futuro cercano nanorrobots capaces de penetrar en el organismo humano para repararlo. La nanotecnología se encuentra en una fase de crecimiento y ha capturado el interés de empresas, gobiernos e inversionistas que buscan desarrollar productos útiles para aplicarlos en diferentes esferas, especialmente en medicina
    corecore