6 research outputs found

    Guided de-escalation of antiplatelet treatment in patients with acute coronary syndrome undergoing percutaneous coronary intervention (TROPICAL-ACS): a randomised, open-label, multicentre trial

    Full text link

    The Pitch Rise Paradigm: A New Task for Real-Time Endoscopy of Non-Stationary Phonation

    Get PDF
    As standard stroboscopy is restricted to the recording of periodic vocal fold vibrations, observations of non-stationary laryngeal mechanisms demand real-time recording systems, the most advanced being the high-speed video technique. It allows the registration of laryngeal parameters during a variation of the fundamental frequency. The aim of this study was to compare amplitude and frequency parameters of vocal fold vibration during stationary and non-stationary phonation, i.e. a monotonous pitch rise. Twenty-nine young female adults with no incidence of voice disorders were examined while performing two diff erent phonation tasks: sustained phonation with a constant frequency and a monotonous pitch rise. Endoscopic recordings and the acoustic signals were acquired simultaneously. Both acoustic and laryngeal parameters were derived for short time intervals of 17.8 ms for the constant pitch and pitch rise conditions. Instantaneous frequency, sound pressure level, vibratory amplitudes of the vocal folds and the type of glottal closure were compared. At the beginning of the pitch rise, the acoustic and laryngeal parameters were similar to the parameters that occurred within the sustained phonation conditions. In contrast, the laryngeal parameters at the middle and at the end of the pitch rise diff ered substantially from those during sustained phonation. For the fi rst time, quantitative measures of the growing glottal chink and the vibration amplitude decrease during pitch increase could be taken. In general, the image evaluation of the pitch rise paradigm can be subdivided into the starting, the raising and the final phase. As each phase can be considered as quasi-stationary, existing software modules are capable of analysing the process by treating each phase separately. Hence, the pitch rise condition may be suitable for clinical examination to detect information of voice disturbances that cannot be visualized during sustained phonation

    The AI Gambit — Leveraging Artificial Intelligence to Combat Climate Change: Opportunities, Challenges, and Recommendations

    No full text
    corecore