11 research outputs found

    Diseño de manual gráfico impreso para la construcción de la estufa "ecológica" Chapina Bonita.

    Get PDF
    Prepara un material gráfico destinado a los voluntarios de El Club Rotario Guatemala, para la visualización de el proceso de la construcción de las estufas Chapina Bonita, y permita la optimización de el proyecto Hogares Libres de Humor

    Adjacent mutations in the gating loop of Kir6.2 produce neonatal diabetes and hyperinsulinism

    Get PDF
    K(ATP) channels regulate insulin secretion from pancreatic beta-cells. Loss- and gain-of-function mutations in the genes encoding the Kir6.2 and SUR1 subunits of this channel cause hyperinsulinism of infancy and neonatal diabetes, respectively. We report two novel mutations in the gating loop of Kir6.2 which cause neonatal diabetes with developmental delay (T293N) and hyperinsulinism (T294M). These mutations increase (T293N) or decrease (T294M) whole-cell K(ATP) currents, accounting for the different clinical phenotypes. The T293N mutation increases the intrinsic channel open probability (Po((0))), thereby indirectly decreasing channel inhibition by ATP and increasing whole-cell currents. T294M channels exhibit a dramatically reduced Po((0)) in the homozygous but not in the pseudo-heterozygous state. Unlike wild-type channels, hetT294M channels were activated by MgADP in the absence but not in the presence of MgATP; however, they are activated by MgGDP in both the absence and presence of MgGTP. These mutations demonstrate the importance of the gating loop of Kir channels in regulating Po((0)) and further suggest that Mg-nucleotide interaction with SUR1 may reduce ATP inhibition at Kir6.2.We thank the Wellcome Trust (076436/Z/05/Z and 081188/A/06/Z), the Royal Society and the European Union (EuroDia, SHM‐CT‐2006‐518513 and EDICT, 201924) for support. FMA is a Royal Society Research Professor. Brittany Zadek was supported by an OXION studentship and Sarah Flanagan by a Sir Graham Wilkins Research Fellowship

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Adjacent mutations in the gating loop of Kir6.2 produce neonatal diabetes and hyperinsulinism

    Get PDF
    K(ATP) channels regulate insulin secretion from pancreatic beta-cells. Loss- and gain-of-function mutations in the genes encoding the Kir6.2 and SUR1 subunits of this channel cause hyperinsulinism of infancy and neonatal diabetes, respectively. We report two novel mutations in the gating loop of Kir6.2 which cause neonatal diabetes with developmental delay (T293N) and hyperinsulinism (T294M). These mutations increase (T293N) or decrease (T294M) whole-cell K(ATP) currents, accounting for the different clinical phenotypes. The T293N mutation increases the intrinsic channel open probability (Po((0))), thereby indirectly decreasing channel inhibition by ATP and increasing whole-cell currents. T294M channels exhibit a dramatically reduced Po((0)) in the homozygous but not in the pseudo-heterozygous state. Unlike wild-type channels, hetT294M channels were activated by MgADP in the absence but not in the presence of MgATP; however, they are activated by MgGDP in both the absence and presence of MgGTP. These mutations demonstrate the importance of the gating loop of Kir channels in regulating Po((0)) and further suggest that Mg-nucleotide interaction with SUR1 may reduce ATP inhibition at Kir6.2

    Dominant ER Stress-Inducing WFS1 Mutations Underlie a Genetic Syndrome of Neonatal/Infancy-Onset Diabetes, Congenital Sensorineural Deafness, and Congenital Cataracts.

    Get PDF
    Neonatal diabetes is frequently part of a complex syndrome with extrapancreatic features: 18 genes causing syndromic neonatal diabetes have been identified to date. There are still patients with neonatal diabetes who have novel genetic syndromes. We performed exome sequencing in a patient and his unrelated, unaffected parents to identify the genetic etiology of a syndrome characterized by neonatal diabetes, sensorineural deafness, and congenital cataracts. Further testing was performed in 311 patients with diabetes diagnosed before 1 year of age in whom all known genetic causes had been excluded. We identified 5 patients, including the initial case, with three heterozygous missense mutations in WFS1 (4/5 confirmed de novo). They had diabetes diagnosed before 12 months (2 before 6 months) (5/5), sensorineural deafness diagnosed soon after birth (5/5), congenital cataracts (4/5), and hypotonia (4/5). In vitro studies showed that these WFS1 mutations are functionally different from the known recessive Wolfram syndrome-causing mutations, as they tend to aggregate and induce robust endoplasmic reticulum stress. Our results establish specific dominant WFS1 mutations as a cause of a novel syndrome including neonatal/infancy-onset diabetes, congenital cataracts, and sensorineural deafness. This syndrome has a discrete pathophysiology and differs genetically and clinically from recessive Wolfram syndrome

    Pueblos indígenas, estados nacionales y fronteras : tensiones y paradojas de los procesos de transición contemporáneos en América Latina. Tomo II

    No full text
    Si hay un rasgo inherente a América Latina en las últimas décadas que permite caracterizarla en muy pocas palabras, son sus grandes y aceleradas transformaciones. Dentro de estos cambios, los pueblos indígenas ocupan un lugar sumamente protagónico, lo cual resulta sorprendente si lo comparamos con la situación de algunas décadas atrás. Es más sorprendente aún, si lo contrastamos con lo que imaginaban los ideólogos de los genocidios perpetrados en tantos lugares de la región en la época de la conformación de los Estados nacionales. Sin duda la situación de los pueblos indígenas en la región es un tema de tal complejidad, multidimensionalidad y al mismo tiempo dinamismo, que cualquier recorte temático, temporal y espacial que se efectúe de la cuestión indígena despierta una sinfín de interrogantes, sobre los cuales es menester profundizar. El propósito central de esta compilación es abordar la situación histórica y actual de los pueblos indígenas de América Latina, considerando las profundas transformaciones socioeconómicas, políticas y culturales que se vienen registrando en función de los procesos de transición contemporáneos

    Applying molecular immunohematology discoveries to standards of practice in blood banks: now is the time

    No full text
    corecore