1,737 research outputs found

    User-Oriented Authorization in Collaborative Environments

    Get PDF
    Access rights for collaborative systems tend to be rather complex, leading to difficulties in the presentation and manipulation of access policies at the user interface level. We confront a theoretical access rights model with the results of a field study which investigates how users specify access policies. Our findings suggest that our theoretical model addresses most of the issues raised by the field study, when the required functionality can be presented in an appropriate user interface

    Associated bacteria affect sexual reproduction by altering gene expression and metabolic processes in a biofilm inhabiting diatom

    Get PDF
    Diatoms are unicellular algae with a fundamental role in global biogeochemical cycles as major primary producers at the base of aquatic food webs. In recent years, chemical communication between diatoms and associated bacteria has emerged as a key factor in diatom ecology, spurred by conceptual and technological advancements to study the mechanisms underlying these interactions. Here, we use a combination of physiological, transcriptomic, and metabolomic approaches to study the influence of naturally coexisting bacteria, Maribacter sp. and Roseovarius sp., on the sexual reproduction of the biofilm inhabiting marine pennate diatom Seminavis robusta. While Maribacter sp. severely reduces the reproductive success of S. robusta cultures, Roseovarius sp. slightly enhances it. Contrary to our expectation, we demonstrate that the effect of the bacterial exudates is not caused by altered cell-cycle regulation prior to the switch to meiosis. Instead, Maribacter sp. exudates cause a reduced production of diproline, the sexual attraction pheromone of S. robusta. Transcriptomic analyses show that this is likely an indirect consequence of altered intracellular metabolic fluxes in the diatom, especially those related to amino acid biosynthesis, oxidative stress response, and biosynthesis of defense molecules. This study provides the first insights into the influence of bacteria on diatom sexual reproduction and adds a new dimension to the complexity of a still understudied phenomenon in natural diatom populations

    Mid-infrared selection of AGN

    Full text link
    Since a large fraction of active galactic nuclei (AGN) is missed in common UV-excess surveys and is even hard to find in radio, near-IR and X-ray surveys, we have used a new AGN selection technique which is expected to be not affected by extinction. Within the scientific verification of the ISOCAM Parallel Survey at 6.7 micron we have discovered objects with exceptional mid-infrared (MIR) emission. They are essentially not detected on IRAS-ADDSCANs and only very few of them show up in the NVSS and FIRST radio surveys. Various colour criteria of the 6.7 micron data with 2MASS and optical wavebands show that the sources reach more extreme IR colours than the sources in the Hubble Deep Field-South and the ELAIS survey. The comparison with known object types suggests that we have found AGN with a pronounced MIR emission, probably due to circum-nuclear dust. First results from optical spectroscopy of ten candidates corroborate this interpretation showing four AGN, two reddened LINER and four extremely reddened emission-line galaxies with MIR/FIR flux ratios higher than for known pure starburst galaxies. The results will make a significant contribution to the debate on the entire AGN population.Comment: 4 pages, 2 figures, accepted for publication as Letter in Astronomy & Astrophysic

    Alignment of microbial fitness with engineered product formation: obligatory coupling between acetate production and photoautotrophic growth

    Get PDF
    Background: Microbial bioengineering has the potential to become a key contributor to the future development of human society by providing sustainable, novel, and cost-effective production pipelines. However, the sustained productivity of genetically engineered strains is often a challenge, as spontaneous non-producing mutants tend to grow faster and take over the population. Novel strategies to prevent this issue of strain instability are urgently needed. Results: In this study, we propose a novel strategy applicable to all microbial production systems for which a genome-scale metabolic model is available that aligns the production of native metabolites to the formation of biomass. Based on well-established constraint-based analysis techniques such as OptKnock and FVA, we developed an in silico pipeline—FRUITS—that specifically ‘Finds Reactions Usable in Tapping Side-products’. It analyses a metabolic network to identify compounds produced in anabolism that are suitable to be coupled to growth by deletion of their re-utilization pathway(s), and computes their respective biomass and product formation rates. When applied to Synechocystis sp. PCC6803, a model cyanobacterium explored for sustainable bioproduction, a total of nine target metabolites were identified. We tested our approach for one of these compounds, acetate, which is used in a wide range of industrial applications. The model-guided engineered strain shows an obligatory coupling between acetate production and photoautotrophic growth as predicted. Furthermore, the stability of acetate productivity in this strain was confirmed by performing prolonged turbidostat cultivations. Conclusions: This work demonstrates a novel approach to stabilize the production of target compounds in cyanobacteria that culminated in the first report of a photoautotrophic growth-coupled cell factory. The method developed is generic and can easily be extended to any other modeled microbial production system

    Room temperature Tamm-Plasmon exciton-polaritons with a WSe2 monolayer

    Get PDF
    This work has been supported by the State of Bavaria. A.K. and S.H. acknowledge the partial financial support from the EPSRC Hybrid Polaritonics Programme. C.S. acknowledges financial support by the European Research Council (unLiMIt-2D project).Solid state cavity quantum electrodynamics is a rapidly advancing field which explores the frontiers of light-matter coupling. Metal-based approaches are of particular interest in this field, since they carry the potential to squeeze optical modes to spaces significantly below the diffraction limit. Transition metal dichalcogenides are ideally suited as the active material in cavity quantum electrodynamics as they interact strongly with light at the ultimate monolayer limit. Here, we implement a Tamm-plasmon-polariton structure, and study the coupling to a monolayer of WSe2, hosting highly stable excitons. Exciton-polariton formation at room temperature is manifested in the characteristic energy-momentum dispersion relation studied in photoluminescence, featuring an anti-crossing between the exciton and photon modes with a Rabi-splitting of 23.5 meV. Creating polaritonic quasi-particles in monolithic, compact architectures with atomic monolayers under ambient conditions is a crucial step towards the exploration of non-linearities, macroscopic coherence and advanced spinor physics with novel, low mass bosons.Publisher PDFPeer reviewe

    Principal component analysis of the Spitzer IRS spectra of ultraluminous infrared galaxies

    Full text link
    We present the first principal component analysis (PCA) applied to a sample of 119 Spitzer Infrared Spectrograph (IRS) spectra of local ultraluminous infrared galaxies (ULIRGs) at z<0.35. The purpose of this study is to objectively and uniquely characterise the local ULIRG population using all information contained in the observed spectra. We have derived the first three principal components (PCs) from the covariance matrix of our dataset which account for over 90% of the variance. The first PC is characterised by dust temperatures and the geometry of the mix of source and dust. The second PC is a pure star formation component. The third PC represents an anti-correlation between star formation activity and a rising AGN. Using the first three PCs, we are able to accurately reconstruct most of the spectra in our sample. Our work shows that there are several factors that are important in characterising the ULIRG population, dust temperature, geometry, star formation intensity, AGN contribution, etc. We also make comparison between PCA and other diagnostics such as ratio of the 6.2 microns PAH emission feature to the 9.7 micron silicate absorption depth and other observables such as optical spectral type.Comment: 12 pages. MNRAS accepte

    Ultraluminous Infrared Galaxies: Atlas of Near-Infrared Images

    Get PDF
    A sample of 27 ultraluminous infrared galaxy (ULIRG) systems has been imaged at 1.6 microns using the HST Near Infrared Camera and Multi-Object Spectrometer (NICMOS). These ULIRGs are from a larger sample also imaged with HST in the I-band. Images and catalog information for the NICMOS subsample, as well as brief morphological descriptions of each system are presented. Inspection of the infrared images and a comparison with optical images of these systems shows that at least 85% are obviously composed of two or more galaxies involved in a close interaction or merger event, with as many as 93% showing some signs of interaction history. Approximately 37% of the systems show either spectroscopic or morphological characteristics of an active galactic nucleus (AGN). The infrared morphologies of these systems are generally less complicated or disturbed than their optical morphologies, indicating that some of the small-scale features seen in optical images are likely due to complicated patterns of dust obscuration, as well as widely distributed star formation activity. In some systems the high-resolution HST infrared images have revealed nuclear remnants that are obscured or unidentified in ground-based imaging, which has led to changes in previously determined interaction stage classifications or system content. In general, however, the NICMOS images support previous conclusions from previous HST optical imaging.Comment: To appear in ApJSupp; 9 embedded figures; Complete ps copy with higher resolution figures available at http://www.stsci.edu/~bushous

    Current Smoking is Associated with Decreased Expression of miR-335-5p in Parenchymal Lung Fibroblasts

    Get PDF
    Cigarette smoking causes lung inflammation and tissue damage. Lung fibroblasts play a major role in tissue repair. Previous studies have reported smoking-associated changes in fibroblast responses and methylation patterns. Our aim was to identify the effect of current smoking on miRNA expression in primary lung fibroblasts. Small RNA sequencing was performed on lung fibroblasts from nine current and six ex-smokers with normal lung function. MiR-335-5p and miR-335-3p were significantly downregulated in lung fibroblasts from current compared to ex-smokers (false discovery rate (FDR) <0.05). Differential miR-335-5p expression was validated with RT-qPCR (p-value = 0.01). The results were validated in lung tissue from current and ex-smokers and in bronchial biopsies from non-diseased smokers and never-smokers (p-value <0.05). The methylation pattern of the miR-335 host gene, determined by methylation-specific qPCR, did not differ between current and ex-smokers. To obtain insights into the genes regulated by miR-335-5p in fibroblasts, we overlapped all proven miR-335-5p targets with our previously published miRNA targetome data in lung fibroblasts. This revealed Rb1, CARF, and SGK3 as likely targets of miR-335-5p in lung fibroblasts. Our study indicates that miR-335-5p downregulation due to current smoking may affect its function in lung fibroblasts by targeting Rb1, CARF and SGK3
    • 

    corecore