7 research outputs found

    Role of P2X7 Receptors in Immune Responses During Neurodegeneration

    Get PDF
    P2X7 receptors are ion-gated channels activated by ATP. Under pathological conditions, the extensive release of ATP induces sustained P2X7 receptor activation, culminating in induction of proinflammatory pathways with inflammasome assembly and cytokine release. These inflammatory conditions, whether occurring peripherally or in the central nervous system (CNS), increase blood-brain-barrier (BBB) permeability. Besides its well-known involvement in neurodegeneration and neuroinflammation, the P2X7 receptor may induce BBB disruption and chemotaxis of peripheral immune cells to the CNS, resulting in brain parenchyma infiltration. For instance, despite common effects on cytokine release, P2X7 receptor signaling is also associated with metalloproteinase secretion and activation, as well as migration and differentiation of T lymphocytes, monocytes and dendritic cells. Here we highlight that peripheral immune cells mediate the pathogenesis of Multiple Sclerosis and Parkinson’s and Alzheimer’s disease, mainly through T lymphocyte, neutrophil and monocyte infiltration. We propose that P2X7 receptor activation contributes to neurodegenerative disease progression beyond its known effects on the CNS. This review discusses how P2X7 receptor activation mediates responses of peripheral immune cells within the inflamed CNS, as occurring in the aforementioned diseases

    The adenosinergic signaling in the pathogenesis and treatment of multiple sclerosis

    Get PDF
    Multiple sclerosis (MS) is a highly disabling, progressive neurodegenerative disease with no curative treatment available. Although significant progress has been made in understanding how MS develops, there remain aspects of disease pathogenesis that are yet to be fully elucidated. In this regard, studies have shown that dysfunctional adenosinergic signaling plays a pivotal role, as patients with MS have altered levels adenosine (ADO), adenosine receptors and proteins involved in the generation and termination of ADO signaling, such as CD39 and adenosine deaminase (ADA). We have therefore performed a literature review regarding the involvement of the adenosinergic system in the development of MS and propose mechanisms by which the modulation of this system can support drug development and repurposing

    Role of purinergic receptors in an animal model of Parkinsons Disease

    No full text
    A Doença de Parkinson é uma doença altamente incapacitante e de grande prevalência. Pouco se sabe sobre sua etiologia e os tratamentos atuais consistem na diminuição dos sintomas, uma vez que ainda não foi encontrada uma maneira de reverter o déficit de neurônios dopaminérgicos observados nos pacientes acometidos. Sabe-se que os receptores purinérgicos são encontrados por todo o sistema nervoso central, não só no indivíduo adulto como também em diferentes estágios do desenvolvimento embrionário e estão envolvidos com proliferação e diferenciação celular. Este trabalho estudou a participação dos receptores purinérgicos em modelo animal de doença de Parkinson por lesão dos neurônios dopaminérgicos da via nigroestriatal com 6-OH dopamina (6-OHDA). Realizamos a análise do perfil de expressão gênica dos diferentes receptores após a lesão e subsequente modulação. Observamos expressão gênica alterada dos receptores P2X7 e P2Y6 até 5 semanas após a lesão. O uso do antagonista do receptor P2X7 Brilliant Blue G (BBG) induziu a regeneração da via nigroestriatal e o uso do antagonista do receptor P2Y6 MRS2578 preveniu a morte dos neurônios. Como esses efeitos foram acompanhados pela inativação de células microgliais, supõe-se que o controle do microambiente neuroinflamatório causado pela injeção de 6-OHDA seja a principal causa do efeito antiparkinsoniano observado pelo tratamento com BBG e MRS2578. Além disso, o transplante celular com células precursoras neuraisnão foi capaz de reverter o comportamento hemiparkinsoniano dos animais lesionados. Apesar do uso concomitante com BBG reduzir o comportamento, parece que esse efeito deve-se ao BBG per se, uma vez que o tratamento somente com o antagonista de P2X7 foi mais eficaz. De maneira geral, a modulação da atividade dos receptores purinérgicos se mostrou uma ferramenta promissora na pesquisa de cura e compreensão das bases moleculares da Doença de ParkinsonParkinson\'s disease is a highly disabling and prevalent disease. Little is known about its etiology and the current treatments consist in the reduction of the symptoms, since there is no known method to reverse the dopaminergic neurons deficit observed in patients. Purinergic receptors are found throughout the central nervous system, not only in the adult individual but also at different stages of embryonic development, and are involved in proliferation and differentiation. This work investigated the role of purinergic receptors in the animal model of Parkinson\'s disease induced by 6-OH dopamine (6-OHDA) injection and consequent death of dopaminergic neurons of the nigrostriatal pathway. Patterns of purinergic receptors gene expression after the lesion and subsequent modulation were analyzed. We observed altered gene expression of P2X7 and P2Y6 receptors within 5 weeks of injury. The use of the P2X7 receptor antagonist Brilliant Blue G (BBG) induced the regeneration of the nigrostriatal pathway and treatment with P2Y6 receptor antagonist MRS2578 prevented the death of the neurons. Since these effects were accompanied by the inactivation of microglial cells, it is assumed that the control of neuroinflammatory milieu caused by the 6-OHDA injection is the main cause of the antiparkinsonian effect observed by the treatment with BBG and MRS2578. In addition, transplantation with neural precursor cells was not able to reverse the hemiparkinsonian behavior of injured animals. Although concomitant use with BBG improved cell engraftment, it appears that this effect is due to BBG per se, since treatment with only this P2X7receptor antagonist was more effective. In general, modulation of purinergic receptor activity showed to be a promising tool in the research of cure and understanding of the molecular bases of Parkinson\'s Disease

    Role of P2X7 Receptors in Immune Responses During Neurodegeneration

    No full text
    P2X7 receptors are ion-gated channels activated by ATP. Under pathological conditions, the extensive release of ATP induces sustained P2X7 receptor activation, culminating in induction of proinflammatory pathways with inflammasome assembly and cytokine release. These inflammatory conditions, whether occurring peripherally or in the central nervous system (CNS), increase blood-brain-barrier (BBB) permeability. Besides its well-known involvement in neurodegeneration and neuroinflammation, the P2X7 receptor may induce BBB disruption and chemotaxis of peripheral immune cells to the CNS, resulting in brain parenchyma infiltration. For instance, despite common effects on cytokine release, P2X7 receptor signaling is also associated with metalloproteinase secretion and activation, as well as migration and differentiation of T lymphocytes, monocytes and dendritic cells. Here we highlight that peripheral immune cells mediate the pathogenesis of Multiple Sclerosis and Parkinson’s and Alzheimer’s disease, mainly through T lymphocyte, neutrophil and monocyte infiltration. We propose that P2X7 receptor activation contributes to neurodegenerative disease progression beyond its known effects on the CNS. This review discusses how P2X7 receptor activation mediates responses of peripheral immune cells within the inflamed CNS, as occurring in the aforementioned diseases

    Role of P2X7 Receptors in Immune Responses During Neurodegeneration

    No full text
    P2X7 receptors are ion-gated channels activated by ATP. Under pathological conditions, the extensive release of ATP induces sustained P2X7 receptor activation, culminating in induction of proinflammatory pathways with inflammasome assembly and cytokine release. These inflammatory conditions, whether occurring peripherally or in the central nervous system (CNS), increase blood-brain-barrier (BBB) permeability. Besides its well-known involvement in neurodegeneration and neuroinflammation, the P2X7 receptor may induce BBB disruption and chemotaxis of peripheral immune cells to the CNS, resulting in brain parenchyma infiltration. For instance, despite common effects on cytokine release, P2X7 receptor signaling is also associated with metalloproteinase secretion and activation, as well as migration and differentiation of T lymphocytes, monocytes and dendritic cells. Here we highlight that peripheral immune cells mediate the pathogenesis of Multiple Sclerosis and Parkinson’s and Alzheimer’s disease, mainly through T lymphocyte, neutrophil and monocyte infiltration. We propose that P2X7 receptor activation contributes to neurodegenerative disease progression beyond its known effects on the CNS. This review discusses how P2X7 receptor activation mediates responses of peripheral immune cells within the inflamed CNS, as occurring in the aforementioned diseases

    Purinergic Receptors in Neurological Diseases With Motor Symptoms: Targets for Therapy

    Get PDF
    Since proving adenosine triphosphate (ATP) functions as a neurotransmitter in neuron/glia interactions, the purinergic system has been more intensely studied within the scope of the central nervous system. In neurological disorders with associated motor symptoms, including Parkinson's disease (PD), motor neuron diseases (MND), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Huntington's Disease (HD), restless leg syndrome (RLS), and ataxias, alterations in purinergic receptor expression and activity have been noted, indicating a potential role for this system in disease etiology and progression. In neurodegenerative conditions, neural cell death provokes extensive ATP release and alters calcium signaling through purinergic receptor modulation. Consequently, neuroinflammatory responses, excitotoxicity and apoptosis are directly or indirectly induced. This review analyzes currently available data, which suggests involvement of the purinergic system in neuro-associated motor dysfunctions and underlying mechanisms. Possible targets for pharmacological interventions are also discussed
    corecore