916 research outputs found

    Numerical solution of the eXtended Pom-Pom model for viscoelastic free surface flows

    Get PDF
    In this paper we present a finite difference method for solving two-dimensional viscoelastic unsteady free surface flows governed by the single equation version of the eXtended Pom-Pom (XPP) model. The momentum equations are solved by a projection method which uncouples the velocity and pressure fields. We are interested in low Reynolds number flows and, to enhance the stability of the numerical method, an implicit technique for computing the pressure condition on the free surface is employed. This strategy is invoked to solve the governing equations within a Marker-and-Cell type approach while simultaneously calculating the correct normal stress condition on the free surface. The numerical code is validated by performing mesh refinement on a two-dimensional channel flow. Numerical results include an investigation of the influence of the parameters of the XPP equation on the extrudate swelling ratio and the simulation of the Barus effect for XPP fluids

    Modulation of the pharmacological effects of enzymatically-active PLA2 by BTL-2, an isolectin isolated from the Bryothamnion triquetrum red alga

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An interaction between lectins from marine algae and PLA<sub>2 </sub>from rattlesnake was suggested some years ago. We, herein, studied the effects elicited by a small isolectin (BTL-2), isolated from <it>Bryothamnion triquetrum</it>, on the pharmacological and biological activities of a PLA<sub>2 </sub>isolated from rattlesnake venom (<it>Crotalus durissus cascavella</it>), to better understand the enzymatic and pharmacological mechanisms of the PLA<sub>2 </sub>and its complex.</p> <p>Results</p> <p>This PLA<sub>2 </sub>consisted of 122 amino acids (approximate molecular mass of 14 kDa), its pI was estimated to be 8.3, and its amino acid sequence shared a high degree of similarity with that of other neurotoxic and enzymatically-active PLA<sub>2</sub>s. BTL-2 had a molecular mass estimated in approximately 9 kDa and was characterized as a basic protein. In addition, BTL-2 did not exhibit any enzymatic activity.</p> <p>The PLA<sub>2 </sub>and BTL-2 formed a stable heterodimer with a molecular mass of approximately 24–26 kDa, estimated by molecular exclusion HPLC. In the presence of BTL-2, we observed a significant increase in PLA<sub>2 </sub>activity, 23% higher than that of PLA<sub>2 </sub>alone. BTL-2 demonstrated an inhibition of 98% in the growth of the Gram-positive bacterial strain, <it>Clavibacter michiganensis michiganensis </it>(Cmm), but only 9.8% inhibition of the Gram-negative bacterial strain, <it>Xanthomonas axonopodis </it>pv <it>passiflorae </it>(Xap). PLA<sub>2 </sub>decreased bacterial growth by 27.3% and 98.5% for Xap and Cmm, respectively, while incubating these two proteins with PLA<sub>2</sub>-BTL-2 inhibited their growths by 36.2% for Xap and 98.5% for Cmm.</p> <p>PLA<sub>2 </sub>significantly induced platelet aggregation in washed platelets, whereas BTL-2 did not induce significant platelet aggregation in any assay. However, BTL-2 significantly inhibited platelet aggregation induced by PLA<sub>2</sub>. In addition, PLA<sub>2 </sub>exhibited strong oedematogenic activity, which was decreased in the presence of BTL-2. BTL-2 alone did not induce oedema and did not decrease or abolish the oedema induced by the 48/80 compound.</p> <p>Conclusion</p> <p>The unexpected results observed for the PLA<sub>2</sub>-BTL-2 complex strongly suggest that the pharmacological activity of this PLA<sub>2 </sub>is not solely dependent on the presence of enzymatic activity, and that other pharmacological regions may also be involved. In addition, we describe for the first time an interaction between two different molecules, which form a stable complex with significant changes in their original biological action. This opens new possibilities for understanding the function and action of crude venom, an extremely complex mixture of different molecules.</p

    Performance of the Genotype® MTBDRPlus assay in the diagnosis of tuberculosis and drug resistance in Samara, Russian Federation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Russia is a high tuberculosis (TB) burden country with a high prevalence of multidrug resistant tuberculosis (MDRTB). Molecular assays for detection of MDRTB on clinical specimens are not widely available in Russia.</p> <p>Results</p> <p>We performed an evaluation of the GenoType<sup>® </sup>MTBDRplus assay (HAIN Lifescience GmbH, Germany) on a total of 168 sputum specimens from individual patients at a public health laboratory in Central Russia, as a model of a middle income site in a region with high levels of drug resistance. Phenotypic drug resistance tests (DST) were performed on cultures derived from the same sputum specimens using the BACTEC 960 liquid media system.</p> <p>Interpretable GenoType<sup>® </sup>MTBDRplus results were obtained for 154(91.7%) specimens with readability rates significantly higher in sputum specimens graded 2+ and 3+ compared to 1+ (RR = 1.17 95%CI 1.04–1.32). The sensitivity and specificity of the assay for the detection of rifampicin (RIF) and isoniazid (INH) resistance and MDR was 96.2%, 97.4%, 97.1% and 90.7%, 83.3%, 88.9% respectively. Mutations in codon 531 of the <it>rpoB </it>gene and codon 315 of the <it>katG </it>gene dominated in RIF and INH resistant strains respectively. Disagreements between phenotypical and molecular tests results (12 samples) could be explained by the presence of rare mutations in strains circulating in Russia and simultaneous presence of resistant and sensitive bacilli in sputum specimens (heteroresistance).</p> <p>Conclusion</p> <p>High sensitivity, short turnaround times and the potential for screening large numbers of specimens rapidly, make the GenoType<sup>® </sup>MTBDRplus assay suitable as a first-line screening assay for drug resistant TB.</p
    corecore