28 research outputs found

    Macroinvertebrates associated with bryophyta in a first-order Atlantic Forest stream

    Get PDF
    This study describes the composition and structure of the benthic community associated with bryophytes in a first-order stream, located in a biological reserve of the Atlantic Forest, during two seasons. During three months of the dry season of 2007 and three months of the rainy season of 2008, samples of bryophytes attached to stones were collected randomly, along a 100 m stream reach. The structure of the community was analyzed through the mean density of individuals, Shannon's diversity index, Pielou's evenness, family richness, dominance index, and the percentage of Ephemeroptera, Plecoptera and Trichoptera (% EPT). Chironomidae larvae were dominant in the two periods of study, followed by Ceratopogonidae in the rainy season, and Naididae in the dry season. The orders EPT contributed 14 families. The results showed that bryophytes constitute suitable habitat which is able to shelter an abundant and diversified benthic fauna in a small extension of the stream. This habitat provides refuge during spates, and thus minimizes downstream transport of the macroinvertebrate fauna.

    Efeito dos extratos de sementes de neem (Azadirachta indica) e sementes e galhos de cinamomo (Melia azedarach) sobre fêmeas adultas e larvas de Rhipicephalus microplus.

    Get PDF
    O carrapato Rhipicephalus microplus é considerado o principal ectoparasita de bovinos, gerando sérios problemas à pecuária nacional, dentre eles, a ocorrência da resistência parasitária gerada pelo uso inapropriado dos químicos sintéticos utilizados para seu controle

    In Vitro

    Get PDF
    Stryphnodendron species, popularly named “barbatimão,” are traditionally used in Brazil as anti-inflammatory agents. This study aimed to investigate the effect of barbatimão and 11 other species on the production of tumor necrosis factor-alpha (TNF-α) in lipopolysaccharide- (LPS-) stimulated THP-1 cells, as well as their anti-arthritis activity. The extracts of Stryphnodendron adstringens, Stryphnodendron obovatum, Campomanesia lineatifolia, and Terminalia glabrescens promoted a concentration-dependent inhibition of TNF-α. Mice injected with LPS in the knee joint were treated per os with fractions from the selected extracts. Both the organic (SAO) and the aqueous (SAA) fractions of S. adstringens promoted a dose-dependent reduction of leukocyte migration and neutrophil accumulation into the joint, but none of them reduced CXCL1 concentration in the periarticular tissue. In contrast, treatment with C. lineatifolia and T. glabrescens fractions did not ameliorate the inflammatory parameters. Analyses of SAO by Ultra Performance Liquid Chromatography (UPLC) coupled to electrospray ionization mass spectrometry (ESI-MS) led to the identification of gallic acid along with 11 prodelphinidins, characterized as monomers and dimers of the B-type. Our findings contribute to some extent to corroborating the traditional use of S. adstringens as an anti-inflammatory agent. This activity is probably related to a decrease of leukocyte migration into the inflammatory site. Polyphenols like gallic acid and prodelphinidins, identified in the active fraction, may contribute to the observed activity

    Integrated terrestrial-freshwater planning doubles conservation of tropical aquatic species

    Get PDF
    Conservation initiatives overwhelmingly focus on terrestrial biodiversity, and little is known about the freshwater cobenefits of terrestrial conservation actions. We sampled more than 1500 terrestrial and freshwater species in the Amazon and simulated conservation for species from both realms. Prioritizations based on terrestrial species yielded on average just 22% of the freshwater benefits achieved through freshwater-focused conservation. However, by using integrated cross-realm planning, freshwater benefits could be increased by up to 600% for a 1% reduction in terrestrial benefits. Where freshwater biodiversity data are unavailable but aquatic connectivity is accounted for, freshwater benefits could still be doubled for negligible losses of terrestrial coverage. Conservation actions are urgently needed to improve the status of freshwater species globally. Our results suggest that such gains can be achieved without compromising terrestrial conservation goals

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Recent updates and perspectives on approaches for the development of vaccines against visceral leishmaniasis

    Full text link
    All rights reserved. Visceral leishmaniasis (VL) is one of the most important tropical diseases worldwide. Although chemotherapy has been widely used to treat this disease, problems related to the development of parasite resistance and side effects associated with the compounds used have been noted. Hence, alternative approaches for VL control are desirable. Some methods, such as vector control and culling of infected dogs, are insufficiently effective, with the latter not ethically recommended. The development of vaccines to prevent VL is a feasible and desirable measure for disease control, for example, some vaccines designed to protect dogs against VL have recently been brought to market. These vaccines are based on the combination of parasite fractions or recombinant proteins with adjuvants that are able to induce cellular immune responses, however, their partial efficacy and the absence of a vaccine to protect against human leishmaniasis underline the need for characterization of new vaccine candidates. This review presents recent advances in control measures for VL based on vaccine development, describing extensively studied antigens, as well as new antigenic proteins recently identified using immuno-proteomic techniquesThis work was supported by grants from Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Rede Nanobiotec/Brasil-Universidade Federal de Uberlândia/CAPES, PRONEX-FAPEMIG (APQ-01019-09), FAPEMIG (CBB-APQ-00819-12 and CBB-APQ-01778-2014), and CNPq (APQ-482976/2012-8, APQ-488237/2013-0, and APQ-467640/2014-9). EAFC and LRG are recipients of the grant from CNPq. MACF is the recipient of grants from FAPEMIG/CAPE

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
    corecore