339 research outputs found

    A traveling salesman approach for predicting protein functions

    Get PDF
    BACKGROUND: Protein-protein interaction information can be used to predict unknown protein functions and to help study biological pathways. RESULTS: Here we present a new approach utilizing the classic Traveling Salesman Problem to study the protein-protein interactions and to predict protein functions in budding yeast Saccharomyces cerevisiae. We apply the global optimization tool from combinatorial optimization algorithms to cluster the yeast proteins based on the global protein interaction information. We then use this clustering information to help us predict protein functions. We use our algorithm together with the direct neighbor algorithm [1] on characterized proteins and compare the prediction accuracy of the two methods. We show our algorithm can produce better predictions than the direct neighbor algorithm, which only considers the immediate neighbors of the query protein. CONCLUSION: Our method is a promising one to be used as a general tool to predict functions of uncharacterized proteins and a successful sample of using computer science knowledge and algorithms to study biological problems

    Divergent Cardiopulmonary Actions of Heme Oxygenase Enzymatic Products in Chronic Hypoxia

    Get PDF
    Hypoxia and pressure-overload induce heme oxygenase-1 (HO-1) in cardiomyocytes and vascular smooth muscle cells (VSMCs). HO-1(-/-) mice exposed to chronic hypoxia develop pulmonary arterial hypertension (PAH) with exaggerated right ventricular (RV) injury consisting of dilation, fibrosis, and mural thrombi. Our objective was to identify the HO-1 product(s) mediating RV protection from hypoxic injury in HO-1(-/-) mice.HO-1(-/-) mice were exposed to seven weeks of hypoxia and treated with inhaled CO or biliverdin injections. CO reduced right ventricular systolic pressure (RVSP) and prevented hypoxic pulmonary arteriolar remodeling in both HO-1(-/-) and control mice. Biliverdin had no significant effect on arteriolar remodeling or RVSP in either genotype. Despite this, biliverdin prevented RV failure in the hypoxic HO-1(-/-) mice (0/14 manifested RV wall fibrosis or thrombus), while CO-treated HO-1(-/-) mice developed RV insults similar to untreated controls. In vitro, CO inhibited hypoxic VSMC proliferation and migration but did not prevent cardiomyocyte death from anoxia-reoxygenation (A-R). In contrast, bilirubin limited A-R-induced cardiomyocyte death but did not inhibit VSMC proliferation and migration.CO and bilirubin have distinct protective actions in the heart and pulmonary vasculature during chronic hypoxia. Moreover, reducing pulmonary vascular resistance may not prevent RV injury in hypoxia-induced PAH; supporting RV adaptation to hypoxia and preventing RV failure must be a therapeutic goal

    Charge state studies of low energy heavy ions passing through hydrogen and helium gas

    Get PDF
    Studies of the charge state distribution of low energy (< 1.5 MeV/u), low Z (< 13) heavy ions passing through hydrogen and helium gas of varying target pressure have been performed using separate windowless gas target systems at TRIUMF and the University of Naples. Semi-empirical relationships have been deduced to estimate the equilibrium charge state distributions as a function of beam energy. From these distributions, cross-sections for the relevant charge changing reactions have been deduced. (C) 2002 Elsevier Science B.V. All rights reserved

    Malaysia: From Crisis to Recovery

    Get PDF

    The 21Na(p,gamma)22Mg Reaction and Oxygen-Neon Novae

    Full text link
    The 21Na(p,gamma)22Mg reaction is expected to play an important role in the nucleosynthesis of 22Na in Oxygen-Neon novae. The decay of 22Na leads to the emission of a characteristic 1.275 MeV gamma-ray line. This report provides the first direct measurement of the rate of this reaction using a radioactive 21Na beam, and discusses its astrophysical implications. The energy of the important state was measured to be Ec.m._{c.m.}= 205.7 ±\pm 0.5 keV with a resonance strength ωγ=1.03±0.16stat±0.14sys\omega\gamma = 1.03\pm0.16_{stat}\pm0.14_{sys} meV.Comment: Accepted for publication in Physical Review Letter

    Bringing class back in: class consciousness and solidarity among Chinese migrant workers in Italy and the UK

    Get PDF
    The growing literature on international migration has a tendency to emphasize homogenous elements such as shared ethnic background, social network and cultural similarities in shaping immigrants' identity. We argue that this underestimates the differences (and sometimes conflicts) of interests between ethnic employers and migrant workers and that class needs to be brought back into the studies of ethnic relationship. Based upon findings from a series of fieldwork in Veneto, Italy and East Midlands, UK, this article contends that class consciousness has co-existed, sometimes uneasily, alongside co-ethnic and cultural relationships among Chinese migrant workers and has played an important part in the making of new Chinese communities. By analysing the perspectives of Chinese migrant workers and their relationship with co-ethnic entrepreneurs, this article illustrates complex factors behind the formation, diffusion and development of class consciousness among Chinese migrant workers

    Uncertainties in global crop model frameworks: effects of cultivar distribution, crop management and soil handling on crop yield estimates

    Get PDF
    Global gridded crop models (GGCMs) combine field-scale agronomic models or sets of plant growth algorithms with gridded spatial input data to estimate spatially explicit crop yields 40 and agricultural externalities at the global scale. Differences in GGCM outputs arise from the use of different bio-physical models, setups, and input data. While algorithms have been in the focus of recent GGCM comparisons, this study investigates differences in maize and wheat yield estimates from five GGCMs based on the public domain field-scale model Environmental Policy Integrated Climate (EPIC) that participate in the AgMIP Global Gridded Crop Model 45 Intercomparison (GGCMI) project. Albeit using the same crop model, the GGCMs differ in model version, input data, management assumptions, parameterization, geographic distribution of cultivars, and selection of subroutines e.g. for the estimation of potential evapotranspiration or soil erosion. The analyses reveal long-term trends and inter-annual yield variability in the EPIC-based GGCMs to be highly sensitive to soil parameterization and crop management. Absolute yield levels as well depend not only on nutrient supply but 50 also on the parameterization and distribution of crop cultivars. All GGCMs show an intermediate performance in reproducing reported absolute yield levels or inter-annual dynamics. Our findings suggest that studies focusing on the evaluation of differences in bio-physical routines may require further harmonization of input data and management assumptions in order to eliminate background noise resulting from differences in model setups. For agricultural impact assessments, employing a GGCM ensemble with its widely varying assumptions 55 in setups appears the best solution for bracketing such uncertainties as long as comprehensive global datasets taking into account regional differences in crop management, cultivar distributions and coefficients for parameterizing agro-environmental processes are lacking. Finally, we recommend improvements in the documentation of setups and input data of GGCMs in order to allow for sound interpretability, comparability and reproducibility of published results

    Large potential for crop production adaptation depends on available future varieties

    Get PDF
    Climate change affects global agricultural production and threatens food security. Faster phenological development of crops due to climate warming is one of the main drivers for potential future yield reductions. To counter the effect of faster maturity, adapted varieties would require more heat units to regain the previous growing period length. In this study, we investigate the effects of variety adaptation on global caloric production under four different future climate change scenarios for maize, rice, soybean, and wheat. Thereby, we empirically identify areas that could require new varieties and areas where variety adaptation could be achieved by shifting existing varieties into new regions. The study uses an ensemble of seven global gridded crop models and five CMIP6 climate models. We found that 39% (SSP5-8.5) of global cropland could require new crop varieties to avoid yield loss from climate change by the end of the century. At low levels of warming (SSP1-2.6), 85% of currently cultivated land can draw from existing varieties to shift within an agro-ecological zone for adaptation. The assumptions on available varieties for adaptation have major impacts on the effectiveness of variety adaptation, which could more than half in SSP5-8.5. The results highlight that region-specific breeding efforts are required to allow for a successful adaptation to climate change

    Substantial Differences in Crop Yield Sensitivities Between Models Call for Functionality‐Based Model Evaluation

    Get PDF
    Crop models are often used to project future crop yield under climate and global change and typically show a broad range of outcomes. To understand differences in modeled responses, we analyzed modeled crop yield response types using impact response surfaces along four drivers of crop yield: carbon dioxide (C), temperature (T), water (W), and nitrogen (N). Crop yield response types help to understand differences in simulated responses per driver and their combinations rather than aggregated changes in yields as the result of simultaneous changes in various drivers. We find that models' sensitivities to the individual drivers are substantially different and often more different across models than across regions. There is some agreement across models with respect to the spatial patterns of response types but strong differences in the distribution of response types across models and their configurations suggests that models need to undergo further scrutiny. We suggest establishing standards in model evaluation based on emergent functionality not only against historical yield observations but also against dedicated experiments across different drivers to analyze emergent functional patterns of crop models
    corecore