10 research outputs found

    Moderate Red Wine Consumption Increases the Expression of Longevity-Associated Genes in Controlled Human Populations and Extends Lifespan in Drosophila melanogaster

    No full text
    The beneficial effects of moderate red wine consumption on cardiovascular health are well known. The composition of red wine includes several compounds, such as the phytoestrogen resveratrol, that exert these beneficial effects, although not all the mechanisms by which they act are known. Our aim was to study the effect of red wine consumption on longevity-related genes in controlled human populations, such as cloistered nuns. We found that the expression of catalase, manganese-superoxide dismutase, Sirt1, and p53 was increased in peripheral blood mononuclear cells after 14 days of moderate red wine consumption. This increase was accompanied by an enhanced metabolic wellness: fatty acids, cholesterol, branched chain amino acids (isoleucine and leucine), ketone bodies (acetoacetate), bacterial co-metabolites (trimethylamine), and cellular antioxidants (taurine) contributed to a change in metabolic profile after moderate red wine consumption by the nuns. No serious unwanted side effects were observed. Finally, we tested the effect of moderate red wine consumption on longevity in a controlled animal population, such as D. melanogaster, and found that it increased average life span by 7%. In conclusion, moderate red wine consumption increases the expression of key longevity-related genes and improves metabolic health in humans and increases longevity in flies

    European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS)

    Get PDF
    The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed

    European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS)

    No full text
    The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed

    Glucose 6-P dehydrogenase delays the onset of frailty by protecting against muscle damage

    Get PDF
    Data de publicació electrònica: 26-10-2021Background: Frailty is a major age-associated syndrome leading to disability. Oxidative damage plays a significant role in the promotion of frailty. The cellular antioxidant system relies on reduced nicotinamide adenine dinucleotide phosphate (NADPH) that is highly dependent on glucose 6-P dehydrogenase (G6PD). The G6PD-overexpressing mouse (G6PD-Tg) is protected against metabolic stresses. Our aim was to examine whether this protection delays frailty. Methods: Old wild-type (WT) and G6PD-Tg mice were evaluated longitudinally in terms of frailty. Indirect calorimetry, transcriptomic profile, and different skeletal muscle quality markers and muscle regenerative capacity were also investigated. Results: The percentage of frail mice was significantly lower in the G6PD-Tg than in the WT genotype, especially in 26-month-old mice where 50% of the WT were frail vs. only 13% of the Tg ones (P < 0.001). Skeletal muscle transcriptomic analysis showed an up-regulation of respiratory chain and oxidative phosphorylation (P = 0.009) as well as glutathione metabolism (P = 0.035) pathways in the G6PD-Tg mice. Accordingly, the Tg animals exhibited an increase in reduced glutathione (34.5%, P < 0.01) and a decrease on its oxidized form (-69%, P < 0.05) and in lipid peroxidation (4-HNE: -20.5%, P < 0.05). The G6PD-Tg mice also showed reduced apoptosis (BAX/Bcl2: -25.5%, P < 0.05; and Bcl-xL: -20.5%, P < 0.05), lower levels of the intramuscular adipocyte marker FABP4 (-54.7%, P < 0.05), and increased markers of mitochondrial content (COX IV: 89.7%, P < 0.05; Grp75: 37.8%, P < 0.05) and mitochondrial OXPHOS complexes (CII: 81.25%, P < 0.01; CIII: 52.5%, P < 0.01; and CV: 37.2%, P < 0.05). Energy expenditure (-4.29%, P < 0.001) and the respiratory exchange ratio were lower (-13.4%, P < 0.0001) while the locomotor activity was higher (43.4%, P < 0.0001) in the 20-month-old Tg, indicating a major energetic advantage in these mice. Short-term exercise training in young C57BL76J mice induced a robust activation of G6PD in skeletal muscle (203.4%, P < 0.05), similar to that achieved in the G6PD-Tg mice (142.3%, P < 0.01). Conclusions: Glucose 6-P dehydrogenase deficiency can be an underestimated risk factor for several human pathologies and even frailty. By overexpressing G6PD, we provide the first molecular model of robustness. Because G6PD is regulated by pharmacological and physiological interventions like exercise, our results provide molecular bases for interventions that by increasing G6PD will delay the onset of frailty.This work was supported by Instituto de Salud Carlos III CB16/10/00435 (CIBERFES) (PID2019-110906RB-I00/AEI/10.13039/501100011033) from the Spanish Ministry of Innovation and Science; 109_RESIFIT from Fundación General CSIC; PROMETEO/2019/097 de ‘Consellería, de Sanitat de la Generalitat Valenciana’ and EU Funded H2020-DIABFRAIL-LATAM (Ref: 825546); European Joint Programming Initiative ‘A Healthy Diet for a Healthy Life’ (JPI HDHL); and the ERA-NET Cofund ERA-HDHL (GA No. 696295 of the EU Horizon 2020 Research and Innovation Programme). Part of the equipment employed in this work has been funded by Generalitat Valenciana and co-financed with ERDF funds (OP ERDF of Comunitat Valenciana 2014–2020). Work in the laboratory of P.J.F.-M. was funded by the FBBVA and the Ramón Areces Foundations. Work in the laboratory of P.M.-C. and A.L.S was funded by by MWRF and Fundació La Marató/TV3-80/19-202021 to P.M.C. and Fundació La Marató de TV3 (Project 202033 to A.L.S.), MINECO-Spain (RTI2018-096068), ERC-2016-AdG-741966, LaCaixa-HEALTH-HR17-00040, MDA, UPGRADE-H2020-825825, AFM, and DPP-Spain; María-de-Maeztu-Program for Units of Excellence to UPF (MDM-2014-0370); and Severo-Ochoa-Program for Centers of Excellence to CNIC (SEV-2015-0505). A.S.-P. was supported by a fellowship from the Spanish ‘Ministerio de Educación, Cultura y Deporte’, award FPU 14/00098

    Corrigendum to “European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS)” (Redox Biol. (2017) 13 (94–162)(S2213231717303373)(10.1016/j.redox.2017.05.007))

    Full text link
    The authors regret that they have to correct the acknowledgement of the above mentioned publication as follows: This article/publication is based upon work from COST Action BM1203 (EU-ROS), supported by COST (European Cooperation in Science and Technology) which is funded by the Horizon 2020 Framework Programme of the European Union. COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation. For further information see www.cost.eu. The authors would like to apologise for any inconvenience caused.This article/publication is based upon work from COST Action BM1203 (EU-ROS), supported by COST (European Cooperation in Science and Technology) which is funded by the Horizon 2020 Framework Programme of the European Union. COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks

    European contribution to the study of ROS:a summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS)

    No full text
    Abstract The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed

    European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS)

    No full text
    The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed

    European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS)

    No full text
    The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed

    A second update on mapping the human genetic architecture of COVID-19

    Get PDF
    corecore