17 research outputs found

    Spatiotemporal modelling and mapping of cervical cancer incidence among HIV positive women in South Africa: a nationwide study

    Get PDF
    Background Disparities in invasive cervical cancer (ICC) incidence exist globally, particularly in HIV positive women who are at elevated risk compared to HIV negative women. We aimed to determine the spatial, temporal, and spatiotemporal incidence of ICC and the potential risk factors among HIV positive women in South Africa. Methods We included ICC cases in women diagnosed with HIV from the South African HIV cancer match study during 2004–2014. We used the Thembisa model, a mathematical model of the South African HIV epidemic to estimate women diagnosed with HIV per municipality, age group and calendar year. We fitted Bayesian hierarchical models, using a reparameterization of the Besag-York-Mollié to capture spatial autocorrelation, to estimate the spatiotemporal distribution of ICC incidence among women diagnosed with HIV. We also examined the association of deprivation, access to health (using the number of health facilities per municipality) and urbanicity with ICC incidence. We corrected our estimates to account for ICC case underascertainment, missing data and data errors. Results We included 17,821 ICC cases and demonstrated a decreasing trend in ICC incidence, from 306 to 312 in 2004 and from 160 to 191 in 2014 per 100,000 person-years across all municipalities and corrections. The spatial relative rate (RR) ranged from 0.27 to 4.43 in the model without any covariates. In the model adjusting for covariates, the most affluent municipalities had a RR of 3.18 (95% Credible Interval 1.82, 5.57) compared to the least affluent ones, and municipalities with better access to health care had a RR of 1.52 (1.03, 2.27) compared to municipalities with worse access to health. Conclusions The results show an increased incidence of cervical cancer in affluent municipalities and in those with more health facilities. This is likely driven by better access to health care in more affluent areas. More efforts should be made to ensure equitable access to health services, including mitigating physical barriers, such as transportation to health centres and strengthening of screening programmes

    Cohort profile: the South African HIV Cancer Match (SAM) study, a national population-based cohort

    Get PDF
    Purpose The South African HIV Cancer Match (SAM) Study is a national cohort of people living with HIV (PLWH). It was created using probabilistic record linkages of routine laboratory records of PLWH retrieved by National Health Laboratory Services (NHLS) and cancer data from the National Cancer Registry. The SAM Study aims to assess the spectrum and risk of cancer in PLWH in the context of the evolving South African HIV epidemic. The SAM Study's overarching goal is to inform cancer prevention and control programmes in PLWH in the era of antiretroviral treatment in South Africa. Participants PLWH (both adults and children) who accessed HIV care in public sector facilities and had HIV diagnostic or monitoring laboratory tests from NHLS. Findings to date The SAM cohort currently includes 5 248 648 PLWH for the period 2004 to 2014; 69% of these are women. The median age at cohort entry was 33.0 years (IQR: 26.2-40.9). The overall cancer incidence in males and females was 235.9 (95% CI: 231.5 to 240.5) and 183.7 (181.2-186.2) per 100 000 person-years, respectively. Using data from the SAM Study, we examined national cancer incidence in PLWH and the association of different cancers with immunodeficiency. Cancers with the highest incidence rates were Kaposi sarcoma, cervix, breast, non-Hodgkin's lymphoma and eye cancer. Future plans The SAM Study is a unique, evolving resource for research and surveillance of malignancies in PLWH. The SAM Study will be regularly updated. We plan to enrich the SAM Study through record linkages with other laboratory data within the NHLS (eg, tuberculosis, diabetes and lipid profile data), mortality data and socioeconomic data to facilitate comprehensive epidemiological research of comorbidities among PLWH

    The Hominin Sites and Paleolakes Drilling Project:Inferring the environmental context of human evolution from eastern African rift lake deposits

    Get PDF
    Funding for the HSPDP has been provided by ICDP, NSF (grants EAR-1123942, BCS-1241859, and EAR-1338553), NERC (grant NE/K014560/1), DFG priority program SPP 1006, DFG-CRC-806 “Our way to Europe”, the University of Cologne (Germany), the Hong Kong Research Grants Council (grant no. HKBU201912), the Peter Buck Fund for Human Origins Research (Smithsonian), the William H. Donner Foundation, the Ruth and Vernon Taylor Foundation, Whitney and Betty MacMillan, and the Smithsonian’s Human Origins Program.The role that climate and environmental history may have played in influencing human evolution has been the focus of considerable interest and controversy among paleoanthropologists for decades. Prior attempts to understand the environmental history side of this equation have centered around the study of outcrop sediments and fossils adjacent to where fossil hominins (ancestors or close relatives of modern humans) are found, or from the study of deep sea drill cores. However, outcrop sediments are often highly weathered and thus are unsuitable for some types of paleoclimatic records, and deep sea core records come from long distances away from the actual fossil and stone tool remains. The Hominin Sites and Paleolakes Drilling Project (HSPDP) was developed to address these issues. The project has focused its efforts on the eastern African Rift Valley, where much of the evidence for early hominins has been recovered. We have collected about 2 km of sediment drill core from six basins in Kenya and Ethiopia, in lake deposits immediately adjacent to important fossil hominin and archaeological sites. Collectively these cores cover in time many of the key transitions and critical intervals in human evolutionary history over the last 4 Ma, such as the earliest stone tools, the origin of our own genus Homo, and the earliest anatomically modern Homo sapiens. Here we document the initial field, physical property, and core description results of the 2012–2014 HSPDP coring campaign.Publisher PDFPeer reviewe

    Lakeside View: Sociocultural Responses to Changing Water Levels of Lake Turkana, Kenya

    Get PDF

    Drivers and trajectories of land cover change in East Africa: Human and environmental interactions from 6000 years ago to present

    Get PDF
    East African landscapes today are the result of the cumulative effects of climate and land-use change over millennial timescales. In this review, we compile archaeological and palaeoenvironmental data from East Africa to document land-cover change, and environmental, subsistence and land-use transitions, over the past 6000 years. Throughout East Africa there have been a series of relatively rapid and high-magnitude environmental shifts characterised by changing hydrological budgets during the mid- to late Holocene. For example, pronounced environmental shifts that manifested as a marked change in the rainfall amount or seasonality and subsequent hydrological budget throughout East Africa occurred around 4000, 800 and 300 radiocarbon years before present (yr BP). The past 6000 years have also seen numerous shifts in human interactions with East African ecologies. From the mid-Holocene, land use has both diversified and increased exponentially, this has been associated with the arrival of new subsistence systems, crops, migrants and technologies, all giving rise to a sequence of significant phases of land-cover change. The first large-scale human influences began to occur around 4000 yr BP, associated with the introduction of domesticated livestock and the expansion of pastoral communities. The first widespread and intensive forest clearances were associated with the arrival of iron-using early farming communities around 2500 yr BP, particularly in productive and easily-cleared mid-altitudinal areas. Extensive and pervasive land-cover change has been associated with population growth, immigration and movement of people. The expansion of trading routes between the interior and the coast, starting around 1300 years ago and intensifying in the eighteenth and nineteenth centuries CE, was one such process. These caravan routes possibly acted as conduits for spreading New World crops such as maize (Zea mays), tobacco (Nicotiana spp.) and tomatoes (Solanum lycopersicum), although the processes and timings of their introductions remains poorly documented. The introduction of southeast Asian domesticates, especially banana (Musa spp.), rice (Oryza spp.), taro (Colocasia esculenta), and chicken (Gallus gallus), via transoceanic biological transfers around and across the Indian Ocean, from at least around 1300 yr BP, and potentially significantly earlier, also had profound social and ecological consequences across parts of the region
    corecore