6 research outputs found

    A Migratory Divide Among Red-Necked Phalaropes in the Western Palearctic Reveals Contrasting Migration and Wintering Movement Strategies

    Get PDF
    Non-breeding movement strategies of migratory birds may be expected to be flexibly adjusted to the distribution and quality of habitat, but only few studies compare movement strategies between populations using distinct migration routes and wintering areas. In thisour study, individual movement strategies of Rred-necked pPhalaropes Phalaropus lobatus, a long-distance migratory wader using saline waters in the non-breeding period, were studied using light-level geolocators. Results revealed the existence of two populations with distinct migration routes and wintering areas: one breeding in the north-eastern North Atlantic and migrating ca. 10,000 km oversea to the tropical eastern Pacific Ocean and the other breeding in Fennoscandia and Russia migrating ca. 6,000 km – largely over land – to the Arabian Sea (Indian Ocean). In line with our expectations, the transoceanic migration between the North Atlantic and the Pacific was associated with proportionately longer wings, a more even spread of stopovers in autumn and a higher migration speed in spring compared to the migration between Fennoscandian-Russian breeding grounds and the Arabian Sea. In the wintering period, birds wintering in the Pacific were stationaryresided in roughly a singlethe same area, whereas individuals wintering in the Arabian Sea showed individually consistent movementsd extensively between different areas, reflecting differences in spatio-temporal variation in primary productivity between the two wintering areas. Our study is unique in showing how habitat distribution shapes movement strategies over the entire non-breeding period within a species.Peer reviewe

    Dramatic changes in the return date of Guillemots Uria Aalge to colonies in Shetland, 1962-2005

    No full text
    Aims To document the changes in return dates over a 44-year period and to identify the factors associated with these changes. Methods We compared changes in return date at Shetland colonies with those for the Isle of May, southeast Scotland, and with the available information on population size, the abundance of some fish species eaten by Common Guillemots and large-scale changes in the oceanography and climate of the eastern Atlantic as reflected by the winter index of the North Atlantic Oscillation (NAO). Results Common Guillemots normally return to colonies in Shetland in late winter. However, during the 1960s return dates became gradually earlier with birds present from early October. Autumn return remained the norm for about ten years after which return dates gradually reverted back to late winter. In contrast, Common Guillemots on the Isle of May, 400 km south of Shetland, showed no marked shift, returning in October each year. There was a strong negative correlation between date of return of Shetland birds and population size, whereas on the Isle of May birds came back earlier when there was a large positive winter NAO index. There was no convincing evidence that changes in wintering areas or fish abundance influenced when birds returned to the colonies, although the fish data may not have been collected on the correct spatial scale. Conclusion Competition for high quality nest-sites is the most likely reason for Common Guillemots returning to the colonies during the autumn and winter

    A migratory divide among red-necked phalaropes in the Western Palearctic reveals contrasting migration and wintering movement strategies

    No full text
    Non-breeding movement strategies of migratory birds may be expected to be flexibly adjusted to the distribution and quality of habitat, but few studies compare movement strategies among populations using distinct migration routes and wintering areas. In our study, individual movement strategies of red-necked phalaropes (Phalaropus lobatus), a long-distance migratory wader which uses saline waters in the non-breeding period, were studied using light-level geolocators. Results revealed a migratory divide between two populations with distinct migration routes and wintering areas: one breeding in the north-eastern North Atlantic and migrating ca. 10,000 km oversea to the tropical eastern Pacific Ocean, and the other breeding in Fennoscandia and Russia migrating ca. 6,000 kmÂżlargely over landÂżto the Arabian Sea (Indian Ocean). In line with our expectations, the transoceanic migration between the North Atlantic and the Pacific was associated with proportionately longer wings, a more even spread of stopovers in autumn and a higher migration speed in spring compared to the migration between Fennoscandian-Russian breeding grounds and the Arabian Sea. In the wintering period, birds wintering in the Pacific were stationary in roughly a single area, whereas individuals wintering in the Arabian Sea moved extensively between different areas, reflecting differences in spatio-temporal variation in primary productivity between the two wintering areas. Our study is unique in showing how habitat distribution shapes movement strategies over the entire non-breeding period within a species

    A migratory divide among red-necked phalaropes in the Western Palearctic reveals contrasting migration and wintering movement strategies

    No full text
    Non-breeding movement strategies of migratory birds may be expected to be flexibly adjusted to the distribution and quality of habitat, but few studies compare movement strategies among populations using distinct migration routes and wintering areas. In our study, individual movement strategies of red-necked phalaropes (Phalaropus lobatus), a long-distance migratory wader which uses saline waters in the non-breeding period, were studied using light-level geolocators. Results revealed a migratory divide between two populations with distinct migration routes and wintering areas: one breeding in the north-eastern North Atlantic and migrating ca. 10,000 km oversea to the tropical eastern Pacific Ocean, and the other breeding in Fennoscandia and Russia migrating ca. 6,000 kmÂżlargely over landÂżto the Arabian Sea (Indian Ocean). In line with our expectations, the transoceanic migration between the North Atlantic and the Pacific was associated with proportionately longer wings, a more even spread of stopovers in autumn and a higher migration speed in spring compared to the migration between Fennoscandian-Russian breeding grounds and the Arabian Sea. In the wintering period, birds wintering in the Pacific were stationary in roughly a single area, whereas individuals wintering in the Arabian Sea moved extensively between different areas, reflecting differences in spatio-temporal variation in primary productivity between the two wintering areas. Our study is unique in showing how habitat distribution shapes movement strategies over the entire non-breeding period within a species

    A migratory divide among red-necked phalaropes in the Western Palearctic reveals contrasting migration and wintering movement strategies

    No full text
    Non-breeding movement strategies of migratory birds may be expected to be flexibly adjusted to the distribution and quality of habitat, but few studies compare movement strategies among populations using distinct migration routes and wintering areas. In our study, individual movement strategies of red-necked phalaropes (Phalaropus lobatus), a long-distance migratory wader which uses saline waters in the non-breeding period, were studied using light-level geolocators. Results revealed a migratory divide between two populations with distinct migration routes and wintering areas: one breeding in the north-eastern North Atlantic and migrating ca. 10,000 km oversea to the tropical eastern Pacific Ocean, and the other breeding in Fennoscandia and Russia migrating ca. 6,000 kmÂżlargely over landÂżto the Arabian Sea (Indian Ocean). In line with our expectations, the transoceanic migration between the North Atlantic and the Pacific was associated with proportionately longer wings, a more even spread of stopovers in autumn and a higher migration speed in spring compared to the migration between Fennoscandian-Russian breeding grounds and the Arabian Sea. In the wintering period, birds wintering in the Pacific were stationary in roughly a single area, whereas individuals wintering in the Arabian Sea moved extensively between different areas, reflecting differences in spatio-temporal variation in primary productivity between the two wintering areas. Our study is unique in showing how habitat distribution shapes movement strategies over the entire non-breeding period within a species
    corecore