33 research outputs found

    Classification of non-indigenous species based on their impacts: Considerations for application in marine management

    Get PDF
    Assessment of the ecological and economic/societal impacts of the introduction of non-indigenous species (NIS) is one of the primary focus areas of bioinvasion science in terrestrial and aquatic environments, and is considered essential to management. A classification system of NIS, based on the magnitude of their environmental impacts, was recently proposed to assist management. Here, we consider the potential application of this classification scheme to the marine environment, and offer a complementary framework focussing on value sets in order to explicitly address marine management concerns. Since existing data on marine NIS impacts are scarce and successful marine removals are rare, we propose that management of marine NIS adopt a precautionary approach, which not only would emphasise preventing new incursions through pre-border and at-border controls but also should influence the categorisation of impacts. The study of marine invasion impacts requires urgent attention and significant investment, since we lack the luxury of waiting for the knowledge base to be acquired before the window of opportunity closes for feasible management

    The enlargement of the Suez Canal and introduction of non-indigenous species to the Mediterranean Sea

    Get PDF
    The Suez Canal is one of the most important waterways in the world – during the last year 17,148 ships passed through the Canal – reducing emissions, saving time, and operating costs to shippers. The rapid increase in ship size from the “Post-Suezmax” (> 12,000 TEU) to the latest container vessels (> 19,000 TEU) now requires enlargements of port facilities and canals. A project of this magnitude, and with potentially negative environmental outcomes, requires a transparent and scientifically sound “Environmental Impact Assessment” (EIA). An explicit obligation on Parties to the Convention on Biological Diversity (https://www.cbd.int/doc/ legal/cbd-en.pdf) was made to consider transboundary impacts on biodiversity, particularly those associated with invasive non-indigenous species

    Report of the JRC’s Descriptor 2 workshop in support to the review of the Commission Decision 2010/477/EU concerning MSFD criteria for assessing Good Environmental Status for NIS

    Get PDF
    The MSFD workshop on non-indigenous species (NIS, MSFD D2), held in Ispra JRC (10th-11th of September 2015) aimed to provide clear proposals and conclusions on some of the outstanding issues identified in the D2 review manual (May 2015 consultation version: D2 review manual: https://circabc.europa.eu/sd/a/cd4bbd6a-454a-40db-b805-52fb195d4e56/COMDEC_Review_D2_V6.pdf) in the broader context of support to the review of Commission Decision 2010/477/EU. This report is complementing the Commission Decision 2010/477/EU review manual (JRC96884) and presents the result of the scientific and technical review concluding phase 1 of the review of the Commission Decision 2010/477/EU in relation to Descriptor 2. The review has been carried out by the EC JRC together with experts nominated by EU Member States, and has considered contributions from the GES Working Group in accordance with the roadmap set out in the MSFD implementation strategy (agreed on at the 11th CIS MSCG meeting). The main issues addressed and tackled in this workshop’s report are: - Proposed changes in D2 assessment criteria; - Indicators and methodological standards; - GES threshold values and reference points; - Way forwar

    Report on the nature and types of driver interactions including their potential future

    Get PDF
    The Baltic Sea is a dynamic environment responding to various drivers operating at different temporal and spatial scales. In response to climate change, the Baltic Sea is warming and the frequency of extreme climatic events is increasing (Lima & Wethey 2012, BACC 2008, Poloczanska et al. 2007). Coastal development, human population growth and globalization intensify stressors associated with human activities, such as nutrient loading, fisheries and proliferation of invasive and bloom-forming species. Such abrupt changes have unforeseen consequences for the biodiversity and the function of food webs and may result in loss of ecological key species, alteration and fragmentation of habitats. To mitigate undesired effects on the Baltic ecosystem, an efficient marine management will depend on the understanding of historical and current drivers, i.e. physical and chemical environmental conditions and human activities that precipitate pressures on the natural environment. This task examined a set of key interactions of selected natural and anthropogenic drivers in space and time, identified in Task 3.1 as well as WP1 and WP2 (e.g. physico-chemical features vs climate forcing; eutrophication vs oxygen deficiency vs bio-invasions; fisheries vs climate change impacts) by using overlay-mapping and sensitivity analyses. The benthic ecosystem models developed under Task 2.1 were used to investigate interactions between sea temperature and eutrophication for various depth strata in coastal (P9) and offshore areas (P1) of the Baltic Sea. This also included investigation on how the frequency and magnitude of deep-water inflow events determines volume and variance of salinity and temperature under the halocline, deep-water oxygen levels and sediment fluxes of nutrients, using observations and model results from 1850 to present (P1, P2, P6, P9, P12). The resulting synthesis on the nature and magnitude of different driver interactions will feed into all other tasks of this WP3 and WP2/WP4. Moreover, the results presented in this report improve the process-based and mechanistic understanding of environmental change in the Baltic Sea ecosystem, thereby fostering the implementation of the Marine Strategy Framework Directive

    Could Seals Prevent Cod Recovery in the Baltic Sea?

    Get PDF
    Fish populations are increasingly affected by multiple human and natural impacts including exploitation, eutrophication, habitat alteration and climate change. As a result many collapsed populations may have to recover in ecosystems whose structure and functioning differ from those in which they were formerly productive and supported sustainable fisheries. Here we investigate how a cod (Gadus morhua) population in the Baltic Sea whose biomass was reduced due to a combination of high exploitation and deteriorating environmental conditions might recover and develop in the 21st century in an ecosystem that likely will change due to both the already started recovery of a cod predator, the grey seal Halichoerus grypus, and projected climate impacts. Simulation modelling, assuming increased seal predation, fishing levels consistent with management plan targets and stable salinity, shows that the cod population could reach high levels well above the long-term average. Scenarios with similar seal and fishing levels but with 15% lower salinity suggest that the Baltic will still be able to support a cod population which can sustain a fishery, but biomass and yields will be lower. At present knowledge of cod and seal interactions, seal predation was found to have much lower impact on cod recovery, compared to the effects of exploitation and salinity. These results suggest that dual management objectives (recovery of both seal and cod populations) are realistic but success in achieving these goals will also depend on how climate change affects cod recruitment
    corecore